Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:49:13.419Z Has data issue: false hasContentIssue false

Study of Periodic Surface Nanostructures Using Coherent Grating X-Ray Diffraction (CGXD)

Published online by Cambridge University Press:  15 February 2011

Qun Shen*
Affiliation:
Cornell High Energy Synchrotron Source (CHESS) and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.
Get access

Abstract

It is shown that an x-ray interference phenomenon, Coherent Grating X-ray Diffraction (CGXD), can be used to study lateral nanostructure arrays on crystal surfaces and interfaces. Compared to Fraunhofer grating diffraction of visible light, x-ray grating diffraction contains information not only about geometric profiles of a surface, but also about the internal crystalline structures and lattice strain distributions in grating features. Grating diffraction patterns can also be measured in a white-beam Laue method using highly collimated polychromatic synchrotron radiation. This provides a way for parallel data collection and is useful in in-situ studies of structural evolution of nanostructure arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Several reports in Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T., MRS Symposia Proceedings No. 256 (materials Research Society, Pittsburgh, 1992).Google Scholar
2. Xie, Y.H., Wilson, W.L., Ross, F.M., Mucha, J.A., Fitzgerald, E.A., Macaulay, J.M., and Harris, T.D., J. Appl. Phys. 71, 2403 (1992).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
5. Chen, Y-P., Reed, J.D., O'Keefe, S.S., Schaff, W.J., and Eastman, L.F., J. Cryst. Growth 134, 162 (1993).Google Scholar
6. Chen, Y-P., Reed, J.D., Schaff, W.J., and Eastman, L.F., Appl. Phys. Lett. 65, 2202 (1994).Google Scholar
7. Delley, B. and Steigmeier, E.F., Phys. Rev. B 47, 1397 (1993).Google Scholar
8. Foreman, B.A., Phys. Rev. B 49, 1757 (1994).Google Scholar
9. Fauchet, P.M., in Light-Emitting Porous Silicon – Fabrication, Properties, and Device Applications, MRS Tutorial, M-20 (1995).Google Scholar
10. Reed, J.D., Chen, Y-P., Tentarelli, E.S., Schaff, W.J., and Eastman, L.F., to be published in J. Vac. Sci. Technolog. (1995).Google Scholar
11. Robinson, I.K., Phys. Rev. B 33, 3830 (1986).Google Scholar
12. Sinha, S.K., Sirota, E.B., Garoff, S., and Stanley, H.B., Phys. Rev. B 38, 2297 (1988).Google Scholar
13. Born, M. and Wolf, E., Principles of Optics, 6th ed. (Pergamon, New York, 1989).Google Scholar
14. Shen, Qun, Umbach, C.C., Weselak, B., and Blakely, J.M., Phys. Rev. B 48, 17967 (1993).Google Scholar
15. Tapfer, L. and Grambow, P., Appl. Phys. A 50, 3 (1990).Google Scholar
16. Macrander, A.T. and Slusky, S.E., Appl. Phys. Lett. 56, 443 (1990).Google Scholar
17. Tolan, M., Konig, G., Brugemann, L., Press, W., Brinkop, F., and Kotthaus, J.P., Europhys. Lett. 20, 223 (1992).Google Scholar
18. Shen, Qun, Weselak, B., and Blakely, J.M., Appl. Phys. Lett. 64, 3554 (1994).Google Scholar
19. Shen, Qun, Umbach, C.C., Weselak, B., and Blakely, J.M., Phys. Rev. B, to be published.Google Scholar
20. Keeffe, M.E., Umbach, C.C., and Blakely, J.M., J. Phys. Chem. Solids 55, 965 (1994).Google Scholar
21. Tanaka, S., Umbach, C.C., Blakely, J.M., and Shen, Qun, to be published in MRS Proceedings, (1995).Google Scholar
22. Sutton, M., Mochrie, S.G.J., Greytak, T., Nagler, S.E., Berman, L.E., Held, G.A., and Stephenson, G.B., Nature 352, 608 (1991).Google Scholar