Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T06:37:59.198Z Has data issue: false hasContentIssue false

Study of polymer-electrode interfaces in polymer light-emitting diodes using electrical impedance spectroscopy

Published online by Cambridge University Press:  11 February 2011

A. van Dijken
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
I.N. Hulea
Affiliation:
Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
H.B. Brom
Affiliation:
Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
K. Brunner
Affiliation:
Philips Research Laboratories, Eindhoven, The Netherlands
Get access

Abstract

Electrical impedance spectroscopy is used to show that time-dependent charge trapping processes occur in double-layer polymer light-emitting diodes based on poly(ethylene-dioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) and poly(p-phenylene vinylene) (PPV). No time-dependent charge trapping processes are observed in single-layer devices based on PPV only. Furthermore, in double-layer devices based on poly(2,7-spirofluorene) (PSF) instead of PPV, such processes are also absent. Traps are probably created in the PPV layer close to the PEDOT:PSS interface due to chemical reactions that occur specifically between PEDOT:PSS and PPV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacDonald, J. R., Impedance spectroscopy. Emphasizing solid materials and systems (John Wiley & Sons, 1987).Google Scholar
2. Campbell, I. H., Smith, D. L., Ferraris, J. P.. Appl. Phys. Lett. 66, 3030 (1995).CrossRefGoogle Scholar
3. Gomes, H. L., Stallinga, P., Rost, H., Holmes, A. B., Harrison, M. G., Friend, R. H.. Appl. Phys. Lett. 74, 1144 (1999).CrossRefGoogle Scholar
4. Meier, M., Karg, S., Riess, W.. J. Appl. Phys. 82, 1961 (1997).CrossRefGoogle Scholar
5. Cao, Y., Yu, G., Zhang, C., Menon, R., Heeger, A. J.. Synth. Metals 87, 171 (1997).CrossRefGoogle Scholar
6. Spreitzer, H., Becker, H., Kluge, E., Kreuder, W., Schenk, H., Demandt, R., Schoo, H.. Adv. Mater. 10, 1340 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
7. Becker, H., Spreitzer, H., Kreuder, W., Kluge, E., Schenk, H., Parker, I. D., Cao, Y.. Adv. Mater. 12, 42 (2000).3.0.CO;2-F>CrossRefGoogle Scholar
8. Becker, H., Büsing, A., Falcou, A., Heun, S., Kluge, E., Parham, A., Stöβel, P., Spreitzer, H., Treacher, K., Vestweber, H.. In “Developments in polymer materials for electroluminescence”; SPIE, San Diego, 2001, 4464.Google Scholar
9. van der Scheer, R. F. J., Master's Thesis (Applied Physics, Technical University Eindhoven, 2002).Google Scholar
10. Lampert, M. A., Mark, P., Current injection in solids (Academic Press, 1970).Google Scholar
11. Blom, P. W. M., de Jong, M. J. M.. IEEE J. Sel. Top. Quantum Electron. 4, 105 (1998).CrossRefGoogle Scholar
12. Blom, P. W. M., Vissenberg, M. C. J. M.. Mater. Sci. Eng. R 27, 53 (2000).CrossRefGoogle Scholar
13. Nguyen, P. H., Scheinert, S., Berleb, S., Brütting, W., Paasch, G.. Org. Electron. 2, 105 (2001).CrossRefGoogle Scholar