Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T10:40:41.124Z Has data issue: false hasContentIssue false

Study of Solid/liquid Interfaces in Organic Field-effect Transistors with Ionic Liquids

Published online by Cambridge University Press:  31 January 2011

Shimpei Ono
Affiliation:
shimpei@criepi.denken.or.jp, Central Research Institute of electric power industry, Materials Science Research laboratory, KOmae, Tokyo, Japan
Kazumoto Miwa
Affiliation:
komiwa@criepi.denken.or.jp, Central Research Institute of electric power industry, Materials Science Research laboratory, KOmae, Tokyo, Japan
Shiro Seki
Affiliation:
s-seki@criepi.denken.or.jp, Central Research Institute of electric power industry, Materials Science Research laboratory, KOmae, Tokyo, Japan
Jun Takeya
Affiliation:
takeya@chem.sci.osaka-u.ac.jp, Osaka University, Graduate School of Science, Toyonaka, Osaka, Japan
Get access

Abstract

We report high-mobility rubrene single-crystal field-effect transistors with ionic-liquid electrolytes used for gate dielectric layers. As the result of fast ionic diffusion to form electric double layers, their capacitances remain more than 1.0 μF/cm2 even at 0.1 MHz. With high carrier mobility of 9.5 cm2/Vs in the rubrene crystal, pronounced current amplification is achieved at the gate voltage of only 0.2 V, which is two orders of magnitude smaller than that necessary for organic thin-film transistors with dielectric gate insulators. The results demonstrate that the ionic-liquid/organic semiconductor interfaces are suited to realize low-power and fast-switching field-effect transistors without sacrificing carrier mobility in forming the solid/liquid interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Malliaras, G. and Friend, R. Phys. Today. 58, 53 (2005).Google Scholar
2 Veres, J. Ogier, S. D. Leeming, S. W. Cupertino, D. C. and Khaffaf, S. M. Adv. Funct. Mater. 13, 193 (2003).Google Scholar
3 Panzer, M. J. and Frisbie, C. D. J. Am. Chem. Soc. 127, 6960 (2005).Google Scholar
4 Panzer, M. J. and Frisbie, C. D. Appl. Phys. Lett. 88, 203504 (2006).Google Scholar
5 Takeya, J. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, K. Ikehata, S. and Aoyagi, Y. Appl. Phys. Lett. 88, 112102 (2006).Google Scholar
6 Shimotani, H. Asanuma, H. Takeya, J. and Iwasa, Y. Appl. Phys. Lett. 89, 203501 (2006).Google Scholar
7 Said, E. Crispin, X. Herlogsson, L. Elhag, S. Robinson, N. D. and Berggren, M. Appl. Phys. Lett. 89, 143507 (2006).Google Scholar
8 Lee, J. Panzer, M. J. He, Y. Lodge, T. P. and Frisbie, C. D. J. Am. Chem. Soc. 129, 4532 (2007).Google Scholar
9 Panzer, M. J. and Frisbie, C. D. J. Am. Chem. Soc. 129, 6599 (2007).Google Scholar
10 Ono, S. Seki, S. Hirahara, R. Tominari, Y. and Takeya, J. Appl. Phys. Lett. 92, 103313 (2008).Google Scholar
11 Uemura, T. Hirahara, R. Tominari, Y. Ono, S. Seki, S. and Takeya, J. Appl. Phys. Lett. 93, 263305 (2008).Google Scholar
12 Shimotani, H. Asanuma, H. Tsukazaki, A. Ohtomo, A. Kawasaki, M. and Iwasa, Y. Appl. Phys. Lett. 91, 082106 (2007).Google Scholar
13 Ueno, K. Nakamura, S. Shimotani, H. Ohtomo, A. Kimura, N. Nojima, T. Aoki, H. Iwasa, Y. and Kawasaki, M. Nature Mat. 7, 855 (2008).Google Scholar
14 Misra, R. McCathy, M. and Hebard, A. F. Appl. Phys. Lett. 90, 052905 (2007).Google Scholar
15 Susan, M. A. B. H. Kaneko, T. Noda, A. and Watanabe, M. J. Am. Chem. Soc. 127, 4976 (2005).Google Scholar
16 Seki, S. Ohno, Y. Kobayashi, Y. Miyashiro, H. Usami, A. Mita, Y. Tokuda, H. Watanabe, M. Hayamizu, K. Tsuzuki, S. Hattori, M. and Terada, N. J. Electrochem, Soc. 154, A173 (2007).Google Scholar
17 Seki, S. Ohno, Y. Kobayashi, Y. Miyashiro, H. Usami, A. Mita, Y. Tokuda, H. Watanabe, M. Hayamizu, K. Tsuzuki, S. Hattori, M. and Terada, N. J. Electrochem, Soc. 154, A173 (2007).Google Scholar
18 Takeya, J. Kato, J. Hara, K. Yamagishi, M. Hirahara, R. Yamada, K. Nakazawa, Y. Ikehata, S. Tsukagoshi, K. Aoyagi, Y. Takenobu, T. and Iwasa, Y. Phys. Rev. Lett. 98, 196804 (2007).Google Scholar
19 Menard, E. Podzorov, V. Hur, S. H. Gaur, A. Gershenson, M. E. and Rogers, J. A. Adv. Mater. 16, 2097 (2004).Google Scholar
20 Takeya, J. Yamagishi, M. Tominari, Y. HIrahara, R. Nakazawa, Y. Nishikawa, T. Kawase, T. Shimoda, T. and Ogawa, S. Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
21 Stassen, A. F. Boer, R. W. I. de, Iosad, N. N. and Morpurgo, A. F. Appl. Phys. Lett. 85, 3899 (2004).Google Scholar
22 Hulea, I. N. Fratini, S. Xie, H. Mulder, C. L. Iossad, N. N. Rastelli, G. Ciuchi, S. and Morpurgo, A. F., Nature Mat. 5, 982 (2006).Google Scholar