Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T14:03:33.089Z Has data issue: false hasContentIssue false

Sublimation Sandwich Growth of Free Standing GaN Crystals

Published online by Cambridge University Press:  10 February 2011

Yu. A. Vodakov
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
E. N. Mokhov
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
M. G. Ramm
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
M. S. Ramm
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
A. D. Roenkov
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
A. G. Ostroumov
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
A. A. Wolfson
Affiliation:
A. F. Ioffe Physical Technical Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia
S. Yu. Karpov
Affiliation:
Advanced Technical Center, P.O.Box 160, 198103 St.Peterburgs Russia
Yu. N. Makarov
Affiliation:
Fluid Mechanics Department University of Erlangen-Nürnberg, Cauerstrasse 4, D-91058 Erlangen, Germany, yuri@lstm.uni-erlangen.de
H. Jürgensen
Affiliation:
+AIXTRON AG, Kackertstr. 15-17, D-52072 Aachen, Germany
Get access

Abstract

Thick epitaxial layers of GaN on SiC and sapphire are grown by using the sublimation sandwich method. It is shown that growth of good quality GaN crystals with the growth rates up to 0.5 mm/hour is possible using this technique. The grown layers have been separated from the seed and free standing GaN crystals up to 15 mm size were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Iwasa, N., Seno, M. and Mukai, T., Jpn. J. Appl. Phys. 31 (1992) 1258.Google Scholar
2. Ejder, E., J. Crystal Growth 22 (1974) 44.Google Scholar
3. Dingle, R., Shaklee, K. L., Leheny, R. F. and Zetterstrom, R. B., Appl. Phys. Lett. 19 (1971) 5.Google Scholar
4. Vodakov, Yu. A., Karklina, M. I., Mokhov, E. N. and Roenkov, A. D., Inorganich. Mater. 17 (1980) 537.Google Scholar
5. Yu. Vodakov, A., Mokhov, E. N. and Roenkov, A. D., Patent USSR N 1136501 (1983).Google Scholar
6. Wetzel, C., Volm, D., Meyer, B. K., Pressl, K., Nilson, S., Mokhov, E. N. and Baranov, P.G., Phys. Lett. 65 (1994) 1033.Google Scholar
7. Porowski, S., Grzcgory, I. and Jun, J., in: High Pressure Chemical Synthesis, J., Jurszac and B., Baraniwski, Eds., Elsevier, Amsterdam (1989) 21.Google Scholar
8. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. 61 (1992) 2688.Google Scholar
9. Vodakov, Yu. A., Mokhov, E. N., Roenkov, A. D., Boiko, M. E. and Baranov, P. G., J. Crystal Growth (1997), in press.Google Scholar
10. Kurai, S., Abe, T., Naoi, Y. and Sakai, S., Jpn. J. Appl. Phys. 35 (1996) 1637.Google Scholar
11. Fisher, S., Wetzel, C., Hanzen, W. L., Bourret-Courchesne, E. D., Meyer, B. K. and Haller, E. E., Appl. Phys. Lett. 69 (1996) 1135.Google Scholar