Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:59:39.682Z Has data issue: false hasContentIssue false

Sulfide Passivated GaAs/AlGaAs Microdisk Lasers

Published online by Cambridge University Press:  22 February 2011

W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. Mohideen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
Department of Materials Science, University of Florida, Gainesville, FL 32611
R. E. Slusher
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Lamont Schnoes
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Sulfide passivation of optically pumped GaAs/AlGaAs microdisks (at 77K) was examined. The microdisks had diameters between 2 and 10 µm and thicknesses of 0.2 µm. The layer structure was grown by organometallic vapor phase epitaxy. An ammonium sulfide solution was used for the passivation. The GaAs/AlGaAs microdisks without the sulfide treatment did not lase when optically pumped, even at the highest pump power densities of 10 kW/cm2. With sulfide treatment cw lasing was achieved with a lifetime of several seconds. A dramatic increase in the laser lifetime was obtained when the sulfide treated samples were encapsulated with silicon nitride in order to prevent loss of sulfur and surface oxidation. In addition to the lifetime increase, the laser output could be increased by nearly an order of magnitude by annealing at 400°C for 300 s or by cw operation over a period of hours at pumping powers near 10 kW/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Slusher, R. E., Levi, A. F. J., Pearton, S. J. and Logan, R. A., Appl. Phys. Lett. 63, 1310 (1993).Google Scholar
[2] McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. and Logan, R. A., Appl. Phys. Lett. 60, 289 (1992).Google Scholar
[3] Levi, A. F. J., Slusher, R. E., McCall, S. L., Pearton, S. J., and Hobson, W. S., Appl. Phys. Lett. 62, 2021 (1993).Google Scholar
[4] Yamamoto, Y. and Slusher, R. E., Physics Today 46, 66 (1993).Google Scholar
[5] Sandroff, C. J., Nottenburg, R. N., Bischoff, J.-C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
[6] Hobson, W. S., Harris, T. D., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 58, 77 (1991).Google Scholar
[7] Nannichi, Y., Fan, J.-F., Oigawa, H., and Koma, A., Jpn. J. Appl. Phys. 27, L2367 (1988).Google Scholar
[8] Tai, K., Hayes, T. R., McCall, S. L., and Tsang, W. T., Appl. Phys. Lett. 53, 302 (1988).Google Scholar
[9] Corbett, B. and Kelly, W. M., Appl. Phys. Lett., 62, 87 (1993).Google Scholar
[10] Oigawa, H., Fan, J., Nannichi, Y., Ando, K., Saiki, K., and Koma, A., Extended Abstracts of the 20th International Conference on Solid State Devices and Materials, Tokyo, 263 (1988).Google Scholar
[11] Oshima, M., Scimeca, T., Watanabe, Y., Oigawa, H., and Nannichi, Y., Jpn. J. Appl. Phys. 32, 518 (1993).Google Scholar
[12] Sugahara, H., Oshima, M., Oigawa, H., Shigekawa, H., and Nannichi, Y., J. Appl. Phys. 69, 4349 (1991).Google Scholar
[13] Mohideen, U., Hobson, W. S., Pearton, S. J., Slusher, R. E., and Ren, F., Appl. Phys. Lett. (in press).Google Scholar