Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:43:59.052Z Has data issue: false hasContentIssue false

Sulfide Passivation of III–V Seiconductors: Electrochemical Aspects

Published online by Cambridge University Press:  21 February 2011

V.V. Bessolov
Affiliation:
Physico-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St.Petersburg 194021, Russia
M.M. Llebedev
Affiliation:
Physico-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St.Petersburg 194021, Russia
E.E. Novikov
Affiliation:
Physico-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St.Petersburg 194021, Russia
A.A. Ioffe
Affiliation:
Physico-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya 26, St.Petersburg 194021, Russia
Get access

Abstract

A phenomenological model is proposed to describe sulfide passivatlon of the surfaces of III-V semiconductors as a process of charge transfer between a semiconductor and a passivating solution. The model assumes that formation of the passivating sulfide coat occurs as a result of oxidation of the semiconductor in a photoelectrochemical reaction. The growth rate of the passivating coat is determined by the rate at which electrons are transferred from the semiconductor into the solution as well as by the energy which binds atoms in the surface layer of the semiconductor and the heat evolving in the process. It is found that the growth rate of the coat is dependent upon conductivity type and doping level of the semiconductor, hydrogen ion exponent and concentration of the solution and, as well, the intensity of light incident upon the electrolyte/semiconductor interface. In terms of the model, passivation of different III-V semiconductors is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandroff, C.J., Nottenburg, R.N., Bischoff, J.-C., and Bhat, R., Appl.Phys.Lett. 51, 33 (1987).Google Scholar
2. Yablonovitch, E., Sandroff, C.J., Bhat, R., and Gmitter, T., Appl.Phys.Lett. 51, 439 (1987).Google Scholar
3. Nottenburg, R.N., Sandroff, C.J., Humphrey, D.A., Hollenbeck, D.A., and Bhat, R., Appl.Phys.Lett. 52, 218 (1988).CrossRefGoogle Scholar
4. Carpenter, M.S., Melloch, M.R., Lundstrom, M.S., and Tobin, S.P., Appl.Phys.Lett. 52, 2157 (1988).Google Scholar
5. Mauk, M.G., Xu, S., Arent, D.J., Mertens, R.P., and Borghs, G., Appl.Phys.Lett. 54, 213 (1989).Google Scholar
6. Novikov, E.B., Khasieva, R.V., and Shaklashvili, G.A., Sov.Phys.Semlcon. 24, 802 (1990).Google Scholar
7. Tamanuki, T., Koyama, F., and Iga, K., Jpn.J.Appl.Phys. 30, 499 (1991)Google Scholar
8. Katiyama, S., Mori, Y., Takahashi, Y., and Ohnaka, K., Appl.Phys.Lett. 58, 2595 (1991).Google Scholar
9. Oigawa, W., Fan, J.-F., Nannichi, Y., Sugahara, H., and Oshima, M., Jpn. J.Appl.Phys. 30, L322 (1991).CrossRefGoogle Scholar
10. Iyer, R., Chang, R.R., Dubey, A., and Lile, D.L., J.Vac.Sci.Technol. B6, 1174 (1988).Google Scholar
11. Lau, W.M., Jin, S., Wu, X.-W., and Ingrey, S., J.Vac.Sci.Technol. B8 848 (1990).Google Scholar
12. Tao, Y., Yelon, A., Sacher, E., Lu, Z.H., and Graham, M.J., Appl.Phys.Lett. 60, 2669 (1992).Google Scholar
13. Berkovits, Y.L., Bessolov, V.N., L'vova, T.V., Novikov, E.B., Safarov, V.I., Khasieva, R.V., and Tsarenkov, B.V., J.Appl.Phys. 70, 3707 (1991).Google Scholar
14. Nannishi, Y., Fan, J.-F., Oigawa, H., and Koma, A., Jpn.J.Appl.Phys. 27, 12367 (1988).Google Scholar
15. Spindt, C.J. and Spicer, W.E., Appl.Phys.Lett. 55, 1653 (1989).Google Scholar
16. Shin, J., Geib, K.M., Wilmsen, W., and Liliental-Weber, Z., J.Vac. Sci.Technol. A8, 1894 (1990).Google Scholar
17. Seo, J.-W., Koker, T., Agarwala, S., and Adesida, I., Appl.Phys. Lett. 60, 1114 (1992).Google Scholar
18. Bessolov, V.N., Lebedev, M.V., L'vova, T.V., and Novikov, E.B., Sov. Phys.Sol.State 34, 911 (1992).Google Scholar
19. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions. (Pergamon Press, New York, 1966), p. 644.Google Scholar
20. Tarenter, M.S., Melloch, M.R., Cowans, B.A., Dardas, Z., and Delgas, W.N., J.Vac.Sci.Technol. B7, 845 (1989).Google Scholar
21. Sandroff, C.J., Hegde, M.S., and Chang, C.C., J.Vac.Sci.Technol. B7, 841 (1989).Google Scholar
22. Marcus, R.A., Electrochim. acta 13, 995 (1968).CrossRefGoogle Scholar
23. Gerischer, H., Surf.Sci. 18, 97 (1969).Google Scholar
24. Kelly, J.J., Meerakker, J.E.A.M. van den, Notten, P.H.L., and Tijburg, R.P., Philips Tech.Rev. 44, 61 (1988).Google Scholar
25. Memming, R., in Electroanalltical Chemistry, v.11, Ed. by Bard, A.J., (Marcel Dekker, New York, 1979).Google Scholar