Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:03:42.212Z Has data issue: false hasContentIssue false

Superconductivity and Intralayer Structure in Potassium Amalgam-Gic

Published online by Cambridge University Press:  15 February 2011

G. Timp
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
B.S. Elman
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M.S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
P. Tedrow
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

We report on the structural, lattice and electronic properties of stage 1,2,3 potassium-amalgam GIG and the relation of these properties to the observed superconducting transition temperature. The ultramicrostructure of the intercalant domains is investigated using lattice fringe imaging. Our observation of macroscopic (√3×√3),(2×2) and (√3×2) domains is consistent with the basal plane zonefolded phenomena observed in the Raman spectra. Shubnikovde Haas measurements of the Fermi surface show high frequency (>1000 T) oscillations in stage 2, identified with the intercalant band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iye, Y. and Tanuma, S., Phys. Rev. B 25, 4583 (1982).CrossRefGoogle Scholar
2. Pendrys, L.A., Wachnik, R., Vogel, F.L., Lagrange, P., Furdin, G.F., El Makrini, M. and Hérold, A., Solid State Commun. 38, 677 (1980).CrossRefGoogle Scholar
3. Lagrange, P., El Makrini, M., Guérard, D., and Hérold, A., Synth. Met. 2, 191 (1980);CrossRefGoogle Scholar
3a. El Makrini, M., Lagrange, P., Guérard, D., and Hérold, A., Carbon 18, 211 (1980);CrossRefGoogle Scholar
3c. Lagrange, P., El Makrini, M., Guérard, D. and Hérold, A., Physica 99B, 473 (1980).Google Scholar
4. Timp, G., Salamanca-Riba, L. and Dresselhaus, G., (unpublished).Google Scholar
5. Dresselhaus, G., Timp, G., Nicolini, C. and Dresselhaus, M.S., Bull. Am. Phys. Soc. 27, 272 (1982);Google Scholar
5a. Timp, G., Dresselhaus, M.S., Salamanca-Riba, L., Hobbs, L.W. and Dresselhaus, G., (unpublished).Google Scholar
6. Suematsu, H., (private communication).Google Scholar
7. Timp, G. and Dresselhaus, M.S., (unpublished).Google Scholar
8. Montgomery, H.C., J. Appl. Phys. 42, 2971 (1971).Google Scholar
9. Evans, E.L. and Thomas, J.M., J. Sol St. Chem. 14, 99 (1975).CrossRefGoogle Scholar
10. Timp, G., Elman, B.S., Al-Jishi, R., and Dresselhaus, G., Solid State Commun. (accepted for publication).Google Scholar
11. Higuchi, K., Suematsu, H. and Tanuma, S., J. Phys. Soc. Japan 48, 1953 (1980).Google Scholar
7. Takada, Y., J. Phys. Soc. Jpn. 51, 63 (1982).CrossRefGoogle Scholar