Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:10:24.383Z Has data issue: false hasContentIssue false

Suppression of Reaction between Si Substrate and Obliquely Deposited Fe Atoms

Published online by Cambridge University Press:  01 February 2011

S. Jomori
Affiliation:
Department of Engineering Physics and Mechanics, Kyoto University Yoshida-honmachi, Sakyo, Kyoto 606–8501, Japan
M. Suzuki
Affiliation:
Department of Engineering Physics and Mechanics, Kyoto University Yoshida-honmachi, Sakyo, Kyoto 606–8501, Japan
K. Nakajima
Affiliation:
Department of Engineering Physics and Mechanics, Kyoto University Yoshida-honmachi, Sakyo, Kyoto 606–8501, Japan
K. Kimura
Affiliation:
Department of Engineering Physics and Mechanics, Kyoto University Yoshida-honmachi, Sakyo, Kyoto 606–8501, Japan
Get access

Abstract

We have investigated the initial stage of the growth of obliquely deposited Fe on a Si substrate held at 470 °C with atomic force microscopy (AFM) and high resolution Rutherford backscattering spectroscopy (HRBS). During the deposition from the normal direction, many Si atoms are displaced from their lattice position due to the reaction with the deposited Fe. On the contrary, the number of displaced Si atoms decreases significantly, and the nanoislands of a few 10 nm in diameter grow selectively when Fe is deposited at 85°. This is clear evidence that the local nucleation processes for the Fe silicide formation is modified by the geometrical deposition conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Robbie, K., Brett, M. J., Lakhtakia, A., J. Vac. Sci Technol. A 13 (1995) 2991.Google Scholar
[2] Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., Brett, M. J., J. Vac. Sci. Technol, A 13 (1995) 1032.Google Scholar
[3] Karabacak, T., Mallikarjunan, A, Singh, J. P., Ye, D, Wang, G., Lu, T., Appl. Phys. Lett., 83 (2003) 3096.Google Scholar
[4] McDaniels, T. H., Venables, J. A., Bennett, P. A., Phys. Rev. Lett., 87 (2001) 176105–1.Google Scholar
[5] Wohllebe, A., Hollander, B., Mesters, S., Dieker, C., Crecelius, G., Michelsen, W., Mantl, S., Thin Solid Films, 287 (1996) 93.Google Scholar
[6] Miyake, K., Makita, Y., Maeda, Y., Suemasu, T., Thin Solid Films, 381 (2001) vii.Google Scholar
[7] Urano, T., Ogawa, T., Kanji, T., J. Vac. Sci. Technol., A 5 (1987) 2046.Google Scholar
[8] Gallego, J.M., Miranda, R., J. Appl. Phys. 69 (1991) 1377.Google Scholar
[9] Konuma, K., Vrijmoeth, J., Zagwijn, P.M., Frenken, J.W.M., Vlieg, E., van der Veen, J.F., J. Appl. Phys. 73 (1993) 1104.Google Scholar
[10] Kinoshita, K., Imaizumi, R., Nakajima, K., Suzuki, M., Kimura, K., Thin Solid Films 461. (2004) 131.Google Scholar
[11] Geib, K. M., Mahan, J. E., Long, R. G., J. Appl. Phys. 70 (1991) 1730.Google Scholar
[12] Tanaka, M., Kumagai, Y., Suemasu, T., Hasegawa, F., Jpn. J. Appl. Phys., 36 (1997) 3620.Google Scholar
[13] Kimura, K., Mannami, M., Nucl. Instrum. Methods, B 113 (1996) 270.Google Scholar
[14] Feldman, L.C. and Mayer, J.W., Fundamentals of Surface and Thin Film Analysis (North-Holland, Amsterdam, 1986).Google Scholar
[15] Salamon, M., Hehrer, H., Philos, Mag. 79A (1999) 2137.Google Scholar