Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T18:53:06.983Z Has data issue: false hasContentIssue false

Surface Diffusion of SiH3 Radicals and Growth Mechanism of a-Si:H and μc-Si

Published online by Cambridge University Press:  01 February 2011

R Dewarrat
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK
J Robertson
Affiliation:
Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK
Get access

Abstract

Existing growth mechanisms of hydrogenated amorphous silicon (a-Si:H) and micro-crystalline silicon assume that the growth species SiH3 can diffuse over the hydrogen-saturated Si surface. However, recent calculations suggest that this could not happen. Local density formalism pseudopotential calculations have been carried out of binding of SiH3 to hydrogen terminated (111)Si surfaces. The bound site is not the three-centre Si-H-Si bridging site previously assumed. It has a direct Si-Si bond between the SiH3 and the surface Si, and the surface hydrogen is displaced to a bond centre of a surface Si-Si bond. A bound site confirms conventional models of growth of a-Si:H and microcrystalline Si, in which a mobile growth species creates smooth surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gallagher, A, J App Phys 63 2406 (1988)10.1063/1.341034Google Scholar
2. Doughty, D A, Doyle, J R, Lin, G H, Gallagher, A, J App Phys 67 6220 (1990)10.1063/1.345188Google Scholar
3. Matsuda, A, Tanaka, K, J Non-Cryst Solids 97 1367 (1987)10.1016/0022-3093(87)90328-0Google Scholar
4. Matsuda, A, Nomoto, K, Takeuchi, Y, Suzuki, A, Yuuki, A and Perrin, J, Surf Sci 227 50 (1990)10.1016/0039-6028(90)90390-TGoogle Scholar
5. Perrin, J, Shiratani, M, Kae-Nune, P, Videlot, H, Jolly, J, Guillon, J, J Vac Sci Technol A 16 278 (1998); J Perrin, J Non-Cryst Solids 137 639 (1991)10.1116/1.580983Google Scholar
6. Robertson, J, J App Phys 87 2608 (2000)10.1063/1.372226Google Scholar
7. Tsai, C C, Knight, J C, Chang, G and Wacker, B, J App Phys 59 2998 (1986)10.1063/1.336920Google Scholar
8. Flewitt, A J, Robertson, J, Milne, W I, J App Phys 85 8032 (1999)Google Scholar
9. Smets, A H M, Scram, D C, Sanden, M C M van de, Mat Res Soc Symp Proc 609 A7.6 (2000)10.1557/PROC-609-A7.6Google Scholar
10. Bray, K R, Parsons, G N, Phys Rev B 165 035311 (2002)Google Scholar
11. Das Sarma, S, Tamborenea, P, Phys Rev Lett 66 325 (1992)10.1103/PhysRevLett.66.325Google Scholar
12. Tamborenea, P, Sarma, S Das, Phys Rev B 48 2575 (1993)Google Scholar
13. Walle, C G van de, Bar-Yam, Y, Pantelides, S T, Phys Rev Lett 60 2761 (1988)Google Scholar
14. Walle, C G Van de, Phys Rev B 49 4579 (1994)10.1103/PhysRevB.49.4579Google Scholar
15. Chang, K J and Chadi, J D, Phys Rev B 40 11644 (1990)Google Scholar
16. Ramalingam, S, Maroudas, D, Aydil, E S, Walch, S P, Surface Sci 418 L8 (1998)Google Scholar
17. Parsons, G N, J Non-Cryst Solids 266 23 (2000)10.1016/S0022-3093(99)00713-9Google Scholar
18. Gupta, A, Yang, H, Parsons, G N, Surface Sci 496 307 (2001)Google Scholar
19. Keudell, A von, Abelson, J R, Phys Rev B 59 5791 (1999)10.1103/PhysRevB.59.5791Google Scholar
20. Payne, M C, Teter, M P, Allan, D C, Arias, T A, Joannopoulos, J D, Rev Mod Phys 64 1045 (1992)Google Scholar
21. Dewarrat, R, Robertson, J, J Non-Cryst Solids (ICAMS proceedings, 2002)Google Scholar
22. Ramalingham, S, Sriraman, S, Aydil, E S, Maroudas, D, App Phys Lett 78 2685 (2001)Google Scholar
23. Koleske, D D, Gates, S M and Jackson, B, J Chem Phys 101 3301 (1994)10.1063/1.467577Google Scholar
24. Srinivasan, E, Yang, H and Parsons, G N, J Chem Phys 105 5467 (1996)10.1063/1.472387Google Scholar
25. Widdra, W, Yi, S I, Maboudian, R, Briggs, G A D, Weinberg, W H, Phys Rev Lett 74 2074 (1995)Google Scholar
26. Kamins, T I, ‘Polycrystalline Silicon ofr Integrated Circuit Applications” (Kluwer, 1988); J H Comfort, R Reif, J Electrochem Soc 136 2386, 2398 (1989)Google Scholar
27. Vittadini, A, Selloni, A, Car, R, Cassarin, M, Phys Rev B 46 4348 (1992)10.1103/PhysRevB.46.4348Google Scholar
28. Street, R A, Kakalios, J, Tsai, C C, Hayes, T M, Phys Rev B 35 1316 (1987)10.1103/PhysRevB.35.1316Google Scholar