Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:13:34.308Z Has data issue: false hasContentIssue false

The Surface Green's Function in Semiconductors by the Tight-Binding Linear Muffin-Tin Orbital Method

Published online by Cambridge University Press:  26 February 2011

M. Šob
Affiliation:
Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Žižkova 22, 616 62 Brno, Czechoslovakia, and University of Pennsylvania, Department of Materials Science and Engineering, 3231 Walnut Street, Philadelphia, PA 19104–6272, U.S.A.
J. Kudrnovský
Affiliation:
Czechoslovak Academy of Sciences, Institute of Physics, Na Slovance 2, 180 40 Prague, Czechoslovakia
Get access

Abstract

A computationally efficient method for the determination of the Green's function (GF) of an ideal semi-infinite semiconductor crystal within the first-principles TB-LMTO approach is developed. Our sample is described by a semi-infinite stack of principal layers with only nearestneighbor interaction between them. The projection of the GF of the ideal semi-infinite crystal onto the top principal layer is the surface GF (SGF), which is evaluated from the condition of removal invariance: by adding (removing) a principal layer of bulk atoms to (from) the semi-infinite crystal we recover the same semi-infinite crystal. This approach avoids the knowledge of the bulk GF and the surface-normal k-integration common in other treatments. Our method is illustrated on the evaluation of k11-resolved densities of states, both on the surface and deep in the sample, for the (110) and (001) faces of typical elemental and AIIIBV semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pollmann, J., in Festkörperprobleme, Advances in Solid State Physics, ed. by Treusch, J. (Vieweg, Braunschweig, 1980), Vol. XX, p. 117, and references therein.Google Scholar
2. Máca, J. and Scheffler, M., Comp. Phys. Commun. 38, 403 (1985);Google Scholar
3. Krüger, P. and Pollmann, J., Phys. Rev. B 38, 10578 (1988).Google Scholar
4. Kudrnovský, J. and Drchal, V., in Studies in Surface Science and Catalysis 36, ed by Koukal, J. (Amsterdam, Elsevier, 1988), p. 74.Google Scholar
5. Wenzien, B., Kudrnovský, J., Drchal, V. and Šob, M., J. Phys: Condens. Matter 1, 9893 (1989).Google Scholar
6. Andersen, O. K., Jepsen, O. and Glötzel, D., in Highlights of Condensed Matter Theory. ed. by Bassani, F., Fumi, F. and Tosi, M. P. (Amsterdam, North Holland, 1985), p. 59;Google Scholar
Andersen, O. K., Jepsen, O. and Šob, M., in Electronic Band Structure and Its Applications, ed. by Yussouff, M. (Springer-Verlag, Heidelberg-New York, 1987), p. 1.Google Scholar
7. Glötzel, D., Segall, B. and Andersen, O. K., Solid State Commun. 36, 403 (1980).Google Scholar
8. Ivanov, I., Mazur, A. and Pollmann, J., Surf. Sci. 92, 365 (1980).CrossRefGoogle Scholar
9. Lambrecht, W. R. L. and Andersen, O. K., Surf. Sci. 178, 256 (1986).Google Scholar
10. Garcia-Moliner, F. and Velasco, R., Progr. Surf. Sci. 21, 93 (1986).CrossRefGoogle Scholar
11. Velický, B. and Kudrnovský, J., Surf. Sci. 64, 411 (1977).Google Scholar
12. Kudmovský, J. and Velický, B., Czech. J. Phys. B 35, 1017 (1985).Google Scholar
13. Christensen, N. E., unpublished.Google Scholar
14. Christensen, N. E., Phys. Rev. B 30, 5753 (1984).Google Scholar
15. Schmeits, M., Mazur, A. and Pollmann, J., Phys. Rev. B 27, 5012 (1983).Google Scholar
16. Lambrecht, W. R. L. and Andersen, O. K., Phys. Rev. B 34, 2439 (1986);CrossRefGoogle Scholar
Kudrnovský, J., Drchal, V., Šob, M., Christensen, N. E. and Andersen, O. K., Phys. Rev. B 40, 10029 (1989).Google Scholar