Published online by Cambridge University Press: 15 March 2011
The low frequency RBM observed in SWNTs has been proved to probe efficiently their diameter distribution. We have built a model to estimate the interactions between individual nanotubes when arranged in bundles which leads to a RBM upshift of 10 to 20 cm−1. In a PMMA-SWNTs composite, our model shows that an upshift can be also predicted as due to the stress applied by the polymer on the bundles upon breathing. Finally, the interaction between concentric layers in MWNTs can lead to low frequency modes originating from the RBM of individual tubes as observed experimentally.