Published online by Cambridge University Press: 10 February 2011
The layered oxides, among the wide family of intercalation compounds, have received considerable attention as positive electrode materials in high-energy density lithium and lithium ion batteries. Within this frame LiNiO2 and LiCoO2 oxides and their solid solutions have been extensively studied as they (and the LiMn2O4 spinels) are the only known materials able to intercalate reversibly lithium at high cell voltage (3.5-4 V). Recently, solid solutions such as LiNi1-xCoxO2 have attracted the attention as alternative cathodes to the state of art LiCoO2 in commercial rechargeable Li-ion batteries. Here we have used the Complex Sol-Gel Process (CSGP) to prepare LiNi1-xCoxO2 (x= 0, 0.25, 0.5, 0.75, 1). Starting sols were prepared from Li+-(1-x)Ni2+-xCo2+ acetate aqueous solution in two different routes. According to route-A aqueous ammonia was added to a starting solution containing 0.2M ascorbic acid (ASC) on 1 M total Me. According to route B the starting acetate solutions were first alkalized by ammonia and then the ascorbic acid was added. Regular sols were concentrated to 1/3 of their initial volume and dried slowly up to 170°C. Thermal transformation of the gels to solids was studied by XRD and IR. The electrochemical properties of the compound LiNi0.75Co0.25O2 prepared by the Route-A were evaluated and reported.