Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T11:12:58.411Z Has data issue: false hasContentIssue false

Synthesis and Electronic Properties SWCNT Sheets

Published online by Cambridge University Press:  01 February 2011

David Lashmore
Affiliation:
dlashmore@nanocomptech.com, Nanocomp, R&D, 162 Pembroke, Concord, NH, 03301, United States, 603 442 8992
Brian White
Affiliation:
bwhite@nanocomptech.com, Nanocomp, R&D, 162 Pembroke, Concord, NH, 03301, United States
Mark Schauer
Affiliation:
mschauer@nanocomptech.com, Nanocomp, R&D, 162 Pembroke, Concord, NH, 03301, United States
Jenn Mann
Affiliation:
jmann@nanocomptech.com, Nanocomp, R&D, 162 Pembroke, Concord, NH, 03301, United States
Get access

Abstract

The commercial synthesis of carbon nanotube sheets will be described. This process involves the following steps: chemical vapor deposition of long CNTs from mixed hydrocarbon type fuels, creation and stabilization of the catalyst, and a large textile forming device. Movies of the growth process will be presented and described. Further the electronic properties of these textiles will be presented and discussed as: (1) A function of temperature from −4 °K to 500 °C, (2) A function frequency from 0 up to about 30 GHz and (3) In a magnetic field up to 1000 Oe. It is shown that these yarns have semiconductor properties but surprisingly exhibit apparent metallic like conduction high at high frequencies. The thermoelectric behavior of the textiles (and yarns) made of this material will be discussed as will the applications in secondary batteries. A power level of up to three watts per gram for the thermoelectric material has been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

2. Rosero, J. A., Ortega, J. A., Aldabas, E. and Romeral, L., Aerospace and Electronic Systems Magazine, IEEE 22 (3), 39 (2007).Google Scholar
3. Endo, M., ChemTech 18, 568576 (1988).Google Scholar
4. Oberlin, A., Endo, M. and Koyama, T., J Cryst Growth 32 (3), 335349 (1976).Google Scholar
5. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C. and Chen, J., Chem Phys Lett 303 (5-6), 467474 (1999).Google Scholar
6. Ci, L., Li, Y., Wei, B., Liang, J., Xu, C. and Wu, D., Carbon 38 (14), 19331937 (2000).Google Scholar
7. Rao, C. N. R. and Govindaraj, A., Accounts Chem Res 35 (12), 9981007 (2002).Google Scholar
8. Andrews, R., Jacques, D., Qian, D. L. and Rantell, T., Accounts Chem Res 35 (12), 10081017 (2002).Google Scholar
9. Motta, M., Li, Y. L., Kinloch, I. and Windle, A., Nano Lett 5 (8), 15291533 (2005).Google Scholar
10. Zhang, X., Sreekumar, T. V., Liu, T. and Kumar, S., J. Phys. Chem. B 108 (42), 1643516440 (2004).Google Scholar
11. Ruzicka, B., Degiorgi, L., Gaal, R., Thien-Nga, L., Bacsa, R., Salvetat, J. P. and Forro, L., Phys Rev B 61 (4), R2468–R2471 (2000).Google Scholar
12. Measured June 5, 2007 at the University of Texas on a CAMA' processed Nanocomp textile.Google Scholar
13. Pauw, L. J. van der, Phillips Technical Review 20, 220 (1958).Google Scholar
14. Banerjee, K., Im, S. J. and Srivastava, N., Proceedings of the 22nd Advanced Metallization Conference, Colorado Springs, CO (2005).Google Scholar
15. Yu, Z. and Burke, P. J., Nano Lett 5 (7), 14031406 (2005).Google Scholar
16. Poncharal, P., Berger, C., Yi, Y., Wang, Z. L. and Heer, W. A. de, J Phys Chem B 106 (47), 1210412118 (2002).Google Scholar
17. Berger, C., Yi, Y., Wang, Z. L. and Heer, W. A. de, Appl Phys a-Mater 74 (3), 363365 (2002).Google Scholar