Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T10:46:15.353Z Has data issue: false hasContentIssue false

Synthesis of embedded Si nano-particles using swift heavy ions and its optical properties

Published online by Cambridge University Press:  20 July 2012

P. K. Sahoo
Affiliation:
School of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar-751005, India
D. P. Mahapatra
Affiliation:
Institute of Physics, Sachivalaya Marg, Bhubaneswar – 751 005, India
D. Kanjilal
Affiliation:
Inter-University Accelerator Centre, New Delhi 110 067, India
Get access

Abstract

Embedded Si nano-particles of average size around 5nm were synthesized in an amorphous Si matrix by two stage ion implantation processes. It has been observed that amorphous Si (a-Si) layers were recrystallized using 50 MeV Au ions with enhanced regrowth rate with activation energy in the range of 0.29 eV. During the crystallization process Si nanocrystals were formed in the a-Si layers due to sudden quenching of the molten tracks created by MeV Au ions. The recrystalizations were confirmed by Rutherford backscattering spectrometry-Channeling (RBSC) technique. The structural modification and nanocluster creation that emerged during recrystallization process was observed in high-resolution transmission electron microscopy and photoluminescence (PL) spectroscopy. The PL emission was observed over a broad band of 2.8 – 3.4 eV and centered at 3.25 eV. The Si nano-crystal formation can be explain by a mechanism combining the melting within the ion tracks by thermal spike process and the subsequent recrystallization nucleated from the crystalline sides at the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cullis, A G, Canham, L T and Calcott, P D J 1997 J. Appl. Phys. 82, 909 10.1063/1.366536Google Scholar
[2] Zhao, X, Schoenfeld, O, Kusano, J, Aoyagi, Y. and Sugano, T. Japan. J. Appl. Phys. 33, L649 (1994)10.1143/JJAP.33.L649Google Scholar
[3] Shimizu-Iwayama, T, Nakao, S and Saitoh, K, Appl. Phys. Lett. 65, 1814 (1994)10.1063/1.112852Google Scholar
[4] Mutti, P, Ghislotti, G, Bertoni, S, Bonoldi, L, Gerofolini, G F, Meda, L, Grilli, E and Guzzi, M. Appl. Phys. Lett. 66, 851 (1995)10.1063/1.113408Google Scholar
[5] Kawaguchi, T and Miyamiza, S Japan. J. Appl. Phys. 32, L215 (1993).10.1143/JJAP.32.L215Google Scholar
[6] Cullis, A G and Canham, L T, Nature 353, 335 (1991).10.1038/353335a0Google Scholar
[7] Kanemitsu, Y, Phys. Rev. B 49 16845 (1994).10.1103/PhysRevB.49.16845Google Scholar
[8] Shimizu-Iwayama, T, Kurumado, N, Hole, D E and Townsend, P D, J. Appl. Phys. 83, 6018 (1998).10.1063/1.367469Google Scholar
[9] Andersen, O K and Veje, E, Phys. Rev. B 53, 15643 (1996).10.1103/PhysRevB.53.15643Google Scholar
[10] Elliman, R G, Williams, J S, Brown, W L, Leiberich, A, Maher, D M and Knoell, R V, Nucl Instrum. Methods B 19/20, 435 (1987).10.1016/S0168-583X(87)80086-1Google Scholar
[11] Chami, A C, Ligeon, E, Danielou, R, Fontenille, J and Eymery, R, J. Appl. Phys. 61, 161 (1987).10.1063/1.338849Google Scholar
[12] Kinomura, A, Willams, J S and Fuji, K, Phys. Rev. B 59, 15214 (1999)10.1103/PhysRevB.59.15214Google Scholar
[13] Wang, Z L, Itoh, N, Matsunami, N and Zhao, Q T 1995 Nucl. Instrum. Methods B 100 493 10.1016/0168-583X(95)00369-XGoogle Scholar
[14] Williams, J S, Elliman, R G, Brown, W L and Seidel, T E 1985 Phys. Rev. Lett. 55, 1482 (1985).10.1103/PhysRevLett.55.1482Google Scholar
[15] Toulemonde, M., Assmann, W., Trautmann, C., Grüner, F., Phys. Rev. Lett. 88, 057602 (2002).10.1103/PhysRevLett.88.057602Google Scholar
[16] Sahoo, P K, Mohanty, T, Kanjilal, D, Pradhan, A and Kulkarni, V N, Nucl. Instrum. Methods B 257, 244 (2007); T. Som. Nucl. Instrum. Methods Phys. Res. B 240, 239(2005).10.1016/j.nimb.2007.01.008Google Scholar
[18] Roccaforte, F., Bolse, W., and Lieb, K. P., Appl. Phys. Lett. 73, 1349 (1998).10.1063/1.122159Google Scholar
[19] Mieskes, H.D., Assmann, W., Grüner, F., Kucal, H., Wang, Z.G., Toulemonde, M., Phys. Rev. B 67, 155414 (2003).10.1103/PhysRevB.67.155414Google Scholar
[20] Williams, J. S., Elliman, R.G., Brown, W.L., and Seidel, T. E., Phys. Rev. Lett. 55, 1482 (1985).10.1103/PhysRevLett.55.1482Google Scholar
[21] Nakata, J., Phys. Rev. B 43, 14643 (1991); J. Appl. Phys. 79, 682 (1996).10.1103/PhysRevB.43.14643Google Scholar
[22] Kim, T W, Park, N, Kim, K H and Sung, G Y, Appl. Phys. Lett. 88 123102 (2006).10.1063/1.2187434Google Scholar
[23] Heera, V., Henkel, T., Kögler, R., and Skorupa, W., Phys. Rev. B 52, 15776 (1995).10.1103/PhysRevB.52.15776Google Scholar
[24] Benyagoub, A., Audren, A., Appl. Phys. Lett., 106, 038516 (2009).Google Scholar
[25] Som, T., Satpati, B., Sinha, O.P., and Kanjilal, D., J. Appl. Phys. 98, 013532 (2005); D. Kanjilal, Nucl. Instr. Meth. Phys. Res. B 245, 255(2006).10.1063/1.1949275Google Scholar
[26] Sahu, G., Lenka, H. P., Mahapatra, D. P., Rout, B. and McDaniel, F. D., J. Phys.: Condens. Matter 22, 072203 (2010); B. Joseph, P. K. Kuiri, A. Pradhan, Nanotechnology 18, 495702(2007).Google Scholar