Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:09:14.830Z Has data issue: false hasContentIssue false

Synthesis of Nickel Disilicide Nanocrystal Monolayers for Nonvolatile Memory Applications

Published online by Cambridge University Press:  01 February 2011

Jong-Hwan Yoon
Affiliation:
jhyoon@kangwon.ac.kr, Kangwon National University, Department of Physics, 192-1 Hyoja-dong, Chuncheon, 200-701, Korea, Republic of, +82-33-250-8466, +82-33-257-9689
Robert G. Elliman
Affiliation:
rob.elliman@anu.edu.au, The Australian National University, Department of Electronic Materials Engineering, Research School of Physical Science and Engineering, Canberra, ACT, 0200, Australia
Get access

Abstract

Nickel silicide nanocrystals (NCs) were formed by thermally annealing SiOxNy films either implanted with Ni or coated with an evaporated Ni film. It is observed that the NCs grow into well-defined single crystalline structures embedded in a SiOxNy matrix, and that their size can be directly controlled by adjusting the concentrations of either silicon or nickel in the SiOxNy layer. The formation of well-defined NC monolayers was also demonstrated by depositing an ultra-thin Ni layer between two SiOxNy layers. These structures are shown to exhibit characteristic capacitance-voltage hysteresis suitable for nonvolatile memory applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kahng, D. and Sze, S. M. J. Bell Syst. Tech. 46, 1283 (1967).Google Scholar
2. Tiwari, S. Rana, F. Chan, K. Shi, L. and Hanafi, H. Appl. Phys. Lett. 69, 1232 (1996).Google Scholar
3. Wang, J. Wu, L. Chen, K. Yu, L. Wang, X. Song, J. and Huang, X. J. Appl. Phys. 101, 014325 (2007).Google Scholar
4. Tu, C. H. Chang, T. C. and Liu, P. T. Liu, H. C. Sze, S. M. Chang, C. Y. Appl. Phys. Lett. 89, 162105 (2006).Google Scholar
5. Liu, Z. Lee, C. Narayanan, V. Pei, C. and Kan, E. C. IEEE Trans. Electron Dev. 49, 1606 (2002).Google Scholar
6. Liu, Z. Lee, C. Narayanan, V. Pei, C. and Kan, E. C. IEEE Trans. Electron Dev. 49, 1614 (2002).Google Scholar
7. Lee, J. J. and Kwong, D. L. IEEE Trans. Electron Dev. 52, 507 (2005).Google Scholar
8. Lee, C. Meteer, J. Narayanan, V. and Kan, E. J. Electron Meter. 34, 1 (2005).Google Scholar
9. Zhao, D. Zhu, Y. and Liu, J. Solid State Electronics 50, 268 (2006).Google Scholar
10. Yuan, J. Pan, G. Z. Chao, Y. L. and Woo, J. C. S. in Nickel Silicide Work Function Tuning Study in Metal-Gate CMOS Applications, edited by Brown, G. J. Biefeld, R. M. Gmachl, C. Manasreh, M. O. and Unterrainer, K. (Mater. Res. Soc. Proc. 829, San Francisco, CA, 2005) pp. B7.11.1-B7.11.6.Google Scholar
11. Yoon, J. H. and Elliman, R. G. J. Appl. Phys. 99, 116106 (2006).Google Scholar