Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:03:42.375Z Has data issue: false hasContentIssue false

Synthesis of Ultra-Small Si Nano Particle Colloids and Thin Films-High Temperature Single Electronics

Published online by Cambridge University Press:  21 March 2011

J. M. Therrien
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL, 61801, USA
G. Belomoin
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL, 61801, USA
M. H. Nayfeh
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL, 61801, USA
Get access

Abstract

We describe a procedure for dispersing electrochemical etched silicon into a colloid of ultra-small (∼1 nm) silicon nano particles. The particles are then reconstituted on a Si substrate by gentle evaporation from a volatile colloid, forming thin films. When the colloid or the film is excited with UV radiation at 355 nm, strong blue emission band at 390 nm is observable with the naked eye in room light. Two-terminal I-V spectra of the deposited film, taken using a scanning tunneling microscope (STM), show a single regular conductance resonance at a spacing of 0.25-0.30 eV, consistent with single electron charging. However, under light irradiation, we observe a second regular resonance, for negative tip biasing less than -1 eV, that modulates the charging structure at ∼ 1.0 eV period, consistent with the particle's quantum energy level spacing. This paves the way for operation of high-temperature Si-based single electron devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kastner, Marc, Physics Today, January, 24 (1993); 1. J. R. Tucker, J. Appl. Phys. 72, 4399 (1992); D. Ali, and H. Ahmed, Appl. Phys. Lett. 64, 2119 (1994)Google Scholar
2. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990); A. G. Cullis, L. T. Canham, and P. Calcott, J. Appl. Phys. 82, 909 (1997)Google Scholar
3. Andsager, D., Hilliard, J., Hetrick, J. M., AbuHassan, L. H., Plisch, M., and Nayfeh, M. H., J. Appl. Phys. 74, 4783 (1993)Google Scholar
4. Yamani, Z., Thompson, H., AbuHassan, L., and Nayfeh, M. H. Appl. Phys. Lett. 70, 3404 (1997); J. Therrien, G. Belomoin, and M. H. Nayfeh, unpublishedGoogle Scholar
5. Heinrich, J., Curtis, C., Credo, G., Kavanagh, K., and Sailor, M., Science 255, 66 (1992)Google Scholar
6. Yamani, Z., Ashhab, S., Nayfeh, A. and Nayfeh, M. H., J. Appl. Phys. 83, 3929 (1998).Google Scholar
7. Ackakir, O, Therrien, J., Belomoin, G., Barry, N., Muller, J., Gratton, E., and Nayfeh, M., (unpublished).Google Scholar
8. Averin, D., Korotkov, A. N., and Likharev, K. K., Phys. Rev. B 44, 6199 (1991)Google Scholar
9. Yamani, Z., Rigakis, N., and Nayfeh, M. H., Appl. Phys Lett. 72, 2556 (1998).Google Scholar
10. Yamani, Z., Gurdal, O., Alaql, A., and Nayfeh, M., J. Appl. Phys. 85, 8050 (1999)Google Scholar
11. Nayfeh, M., Akcakir, O., Therrien, J., Yamani, Z., Barry, N., Yu, W., and Gratton, E., Appl. Phys. Lett. (In Press: Dec 27, 1999)Google Scholar