Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T20:02:45.479Z Has data issue: false hasContentIssue false

Synthesis, Properties, and Applications of Hydrophilic Hollow Carbon Nanoparticles from C60 and its Soot

Published online by Cambridge University Press:  10 April 2013

Ken Kokubo
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Hiroshi Ueno
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Yuji Nakamura
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Shizuka Yamakura
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Takumi Oshima
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Get access

Abstract

We have developed a facile synthetic method for highly water-soluble, hollow carbon nanoparticles with a diameter of ∼1 nm, as a so-called fullerenol. The method was extended to fullerene soot to obtain the corresponding hydrophilic carbon materials, and the products were subjected to IR and elemental analysis. Particle size analysis demonstrated the relatively high dispersion of particles with diameters of ∼70 nm, in water. The surface analysis using FE-SEM showed the difference in morphology between fullerene soot and activated carbon as well as between before and after hydrophilic treatment of the soot with hydrogen peroxide. Moreover, this hydrophilic fullerene soot exhibited high antioxidant activity as compared with fullerenol and C60.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kokubo, K., In “The delivery of nanoparticles, ” Hashim, A. A. Ed., InTech, Croatia, Chap. 15, 317332 (2012).Google Scholar
Nakashima, N., Int. J. Nanosci. 4, 119137 (2005).CrossRefGoogle Scholar
Osawa, E., In “Chemistry of nanocarbons, ” Akasaka, T., Wudl, F., Nagase, S. Eds., John Wiley & Sons, Chap. 17, 413432 (2010).CrossRefGoogle Scholar
Chiang, L. Y., Wang, L.-Y., Swirczewski, J. W., Soled, S., Cameron, S., J. Org. Chem. 59, 39603968 (1994).CrossRefGoogle Scholar
Li, J., Takeuchi, A., Ozawa, M., Li, X., Saigo, K., Kitazawa, K., J. Chem. Soc., Chem. Commun. 17841785 (1993).CrossRefGoogle Scholar
Kokubo, K., Matsubayashi, K., Tategaki, H., Takada, H., Oshima, T., ACS Nano 2, 327333 (2008).CrossRefGoogle Scholar
Kokubo, K., Shirakawa, S., Kobayashi, N., Aoshima, H., Oshima, T., Nano Res. 4, 204215 (2011).CrossRefGoogle Scholar
Saitoh, Y., Xiao, L., Mizuno, H., Kato, S., Aoshima, H., Taira, H., Kokubo, K., Miwa, N., Free Radic. Res. 44, 10721081 (2010).CrossRefGoogle Scholar
Saitoh, Y., Mizuno, H., Xiao, L., Hyoudou, S., Kokubo, K., Miwa, N., Mol. Cell. Biochem. 366, 191200 (2012).CrossRefGoogle Scholar
Aoshima, H., Kokubo, K., Shirakawa, S., Ito, M., Yamana, S., Oshima, T., Biocont. Sci. 14, 6972 (2009).CrossRefGoogle Scholar
Saitoh, Y., Miyanishi, A., Mizuno, H., Kato, S., Aoshima, H., Kokubo, K., Miwa, N., J. Photochem. Photobiol. B 102, 6976 (2011).CrossRefGoogle Scholar
Inui, S., Aoshima, H., Ito, M., Kokubo, K., Itami, S., J. Cosmet. Sci. 63, 259268 (2012).Google Scholar
Takaya, Y., Kishida, H., Hayashi, T., Michihata, M., Kokubo, K., CIRP Ann. –Manuf. Techn. 60, 567570 (2011).CrossRefGoogle Scholar
Saotome, T., Kokubo, K., Shirakawa, S., Oshima, T., Hahn, H. T., J. Compos. Mater. 45, 25952601 (2011).CrossRefGoogle Scholar
Takada, H., Kokubo, K., Matsubayashi, K., Oshima, T., Biosci. Biotechnol. Biochem. 70, 30883093 (2006).CrossRefGoogle Scholar
Karousis, N., Tagmatarchis, N., Tasis, D., Chem. Rev. 110, 53665397 (2010).CrossRefGoogle Scholar