Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T18:06:30.041Z Has data issue: false hasContentIssue false

Temperature Dependence of Nanoscale Friction Investigated with Thermal AFM Probes

Published online by Cambridge University Press:  31 January 2011

Christian Greiner
Affiliation:
cgreiner@seas.upenn.edu, University of Pennsylvania, Department for Mechanical Engineering and Applied Mechanics, Philadelphia, Pennsylvania, United States
Jonathan R. Felts
Affiliation:
felts2@illinois.edu, University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, Illinois, United States
Zhenting Dai
Affiliation:
ztdai@illinois.edu, University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, Illinois, United States
William P. King
Affiliation:
wpk@illinois.edu, University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, Illinois, United States
Robert W. Carpick
Affiliation:
carpick@seas.upenn.edu, University of Pennsylvania, Department for Mechanical Engineering and Applied Mechanics, Philadelphia, Pennsylvania, United States
Get access

Abstract

Measurements of nanoscale friction between silicon AFM tips featuring an in-situ solid state heater and silicon substrates (both with native oxide) were performed. The temperature of the heater was varied between room temperature and approximately 650 °C. For these temperatures and the silicon substrate, the temperatures at the point of contact are estimated to range from room temperature to approximately 120±20 °C. Experiments were carried out in ambient atmosphere (˜30% relative humidity) and under dry nitrogen. Tests under constant load revealed that in the presence of ambient, friction increased with heater temperature whereas it did not change in dry nitrogen. For experiments carried out for different tip velocities (40 to 7800 nm/s), friction decreased with velocity in ambient and did not change in dry nitrogen. Both trends can be explained by thermally-assisted formation of capillary bridges between tip and substrate and the kinetics of capillary condensation under ambient conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schirmeisen, A. Jansen, L. Holscher, H. & Fuchs, H. (2006) Applied Physics Letters 88, 123108.Google Scholar
2 Brukman, M. J. Gao, G. T. Nemanich, R. J. & Harrison, J. A. (2008) Journal of Physical Chemistry C 112, 93589369.Google Scholar
3 Krylov, S. Y. & Frenken, J. W. M. (2008) Journal of Physics-Condensed Matter 20.Google Scholar
4 Zhao, X. Hamilton, M. Sawyer, W. G. & Perry, S. S. (2007) Tribology Letters 27, 113.Google Scholar
5 Zhao, X. Y. Phillpot, S. R. Sawyer, W. G. Sinnott, S. B. & Perry, S. S. (2009) Physical Review Letters 102.Google Scholar
6 Tshiprut, Z. Zelner, S. & Urbakh, M. (2009) Physical Review Letters 102.Google Scholar
7 Carpick, R. W. & Salmeron, M. (1997) Chemical Reviews 97, 11631194.Google Scholar
8 Szlufarska, I. Chandross, M. & Carpick, R. W. (2008) Journal of Physics D-Applied Physics 41.Google Scholar
9 Jansen, L. Schirmeisen, A. Hedrick, J. L. Lantz, M. A. Knoll, A. Cannara, R. & Gotsmann, B. (2009) Physical Review Letters 102.Google Scholar
10 Bao, H. F. & Li, X. X. (2008) Review of Scientific Instruments 79.Google Scholar
11 Szoszkiewicz, R. & Riedo, E. (2005) Physical Review Letters 95.Google Scholar
12 Vettiger, P. Cross, G. Despont, M. Drechsler, U. Durig, U. Gotsmann, B. Haberle, W., Lantz, M. A. Rothuizen, H. E. Stutz, R. & Binnig, G. K. (2002) IEEE Transactions on Nanotechnology 1, 3955.Google Scholar
13 Lee, J. Beechem, T. Wright, T. L. Nelson, B. A. Graham, S. & King, W. P. (2006) Journal of Microelectromechanical Systems 15, 16441655.Google Scholar
14 Nelson, B. A. & King, W. P. (2007) Sensors and Actuators a-Physical 140, 5159.Google Scholar
15 Tortonese, M. & Kirk, M. (1997) Proc. SPIE - Int. Soc. Opt. Eng. 3009, 5360.Google Scholar
16 Ohler, B. (2007) Veeco Calibration Instructions.Google Scholar
17 Li, Q. Kim, K. S. & Rydberg, A. (2006) Review of Scientific Instruments 77.Google Scholar
18 Sumant, A. V. Grierson, D. S. Gerbi, J. E. Birrell, J. Lanke, U. D. Auciello, O. Carlisle, J. A. & Carpick, R. W. (2005) Advanced Materials 17, 1039–+.Google Scholar
19 Nelson, B. A. & King, W. P. (2008) Nanoscale and Microscale Thermophysical Engineering 12, 98115.Google Scholar
20http://nanoprobenetwork.org/welcome-to-the-carpick-labs-software-toolbox.Google Scholar
21 Tomlinson, G. A. (1929) Philos. Mag. Ser. 7, 905939.Google Scholar
22 Prandtl, L. (1928) Zeitschrift für angewandte Mathemathik und Mechanik 8, 85.Google Scholar
23 Gnecco, E. Bennewitz, R. Gyalog, T. Loppacher, C. Bammerlin, M. Meyer, E. & Guntherodt, H. J. (2000) Physical Review Letters 84, 11721175.Google Scholar
24 Evstigneev, M. & Reimann, P. (2004) Europhysics Letters 67, 907913.Google Scholar
25 Nakamura, J. Wakunami, S. & Natori, A. (2005) Physical Review B 72.Google Scholar
26 Fusco, C. & Fasolino, A. (2005) Physical Review B 71.Google Scholar
27 Bennewitz, R. Gnecco, E. Gyalog, T. & Meyer, E. (2001) Tribology Letters 10, 5156.Google Scholar
28 Jang, J. Schatz, G. C. & Ratner, M. A. (2003) Physical Review Letters 90.Google Scholar
29 Jang, J. Y. Schatz, G. C. & Ratner, M. A. (2004) Physical Review Letters 92.Google Scholar
30 Weeks, B. L. Vaughn, M. W. & DeYoreo, J. J. (2005) Langmuir 21, 80968098.Google Scholar
31 Weeks, B. L. & DeYoreo, J. J. (2006) Journal of Physical Chemistry B 110, 1023110233.Google Scholar
32 Opitz, A. Ahmed, S. I. U., Scherge, M. & Schaefer, J. A. (2005) Tribology Letters 20, 229234.Google Scholar
33 Opitz, A. Ahmed, S. I. U., Schaefer, J. A. & Scherge, M. (2003) Wear 254, 924929.Google Scholar
34 Bhushan, B. Liu, H. W. & Hsu, S. M. (2004) Journal of Tribology-Transactions of the Asme 126, 583590.Google Scholar
35 Binggeli, M. & Mate, C. M. (1994) Applied Physics Letters 65, 415417.Google Scholar