Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T18:23:10.907Z Has data issue: false hasContentIssue false

Terahertz-induced Kerr-effect in Relaxor Ferroelectrics

Published online by Cambridge University Press:  31 January 2011

Matthias C Hoffmann
Affiliation:
mch@mit.edumatthias.c.hoffmann@desy.de, Max Planck Group for Structural Dynamics, CFEL, University of Hamburg, Hamburg, Germany
Harold Y Hwang
Affiliation:
hhwang82@mit.edu, Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts, United States
Nathaniel C Brandt
Affiliation:
mcbrandt@mit.edu, Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts, United States
Ka-Lo Yeh
Affiliation:
kaloyeh@mit.edu, Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts, United States
Keith A Nelson
Affiliation:
kanelson@mit.edu
Get access

Abstract

We demonstrate the Kerr-effect induced by the electric field of single-cycle THz pulses in the relaxor ferroelectrics potassium-tantalum niobate KTa1-xNbxO3 (KTN) and K1-yLiyTa1-xNbxO3 (KLTN). We find a slow orientational relaxation with a time constant of 6 ps in KTN with x=1.8% at room temperature, that decreases upon approaching the transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Samara, G.A. Physical Review Letters, 1984. 53(3): p. 298.Google Scholar
2 Samara, G.A., Ferroelectricity Revisited – Advances in Materials and Physics, in Solid State Physics: Advances in Research and Application, Ehrenreich, H. Editor. 2001, Academic Press.Google Scholar
3 Vugmeister, B.E., P., DiAntonio and Toulouse, J.. Physical Review Letters, 1995. 75(8): p. 1646.Google Scholar
4 Toshihiro, I. et al. High-Frequency Response of Electro-Optic Single Crystal KTa1-xNbxO3 in Paraelectric Phase. in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies. 2005: Optical Society of America.Google Scholar
5 Wanga, X. et al. Journal of Crystal Growth, 2006. 293: p. 398403.Google Scholar
6 Geusic, J.E., S.K., Kurtz Uitert, L.G. Van, and S.H., Wemple. Applied Physics Letters, 1964. 4(8): p. 141143.Google Scholar
7 van Raalte, J.A. J. Opt. Soc. Am, 1967. 57(5): p. 671674.Google Scholar
8 Hebling, J., G., Almasi I., Kozma and Kuhl, J.. Optics Express, 2002. 10: p. 11611166.Google Scholar
9 Feurer, T. et al. Annu. Rev. Mater. Res., 2007. 37: p. 317350.Google Scholar
10 Yeh, K.L., M.C., Hoffmann J., Hebling and K.A., Nelson. Appl. Phys. Lett., 2007. 90: p. 171121.Google Scholar
11 Hoffmann, M.C. et al. Appl. Phys. Lett., 2009. 95 (23).Google Scholar
12 Winnewisser, C. et al. Appl. Phys. Lett., 1997. 70: p. 30693071.Google Scholar
13 Yariv, A. and P., Yeh Optical Waves in Crystals. 1984, New York: Wiley & Sons.Google Scholar
14 Qi, T., Shin, Y.H. Yeh, K.L., Nelson, K.A., and Rappe, A.M., Phys. Rev. Lett., 2009. 102: 247603.Google Scholar