Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T03:31:32.643Z Has data issue: false hasContentIssue false

Theoretical investigation of Pt monosilicide and several germanides: electronic structure, surface energetics, and work functions

Published online by Cambridge University Press:  26 February 2011

Manish K. Niranjan
Affiliation:
manish@physics.utexas.eduThe University of TexasAustinTX 78712United States
Leonard Kleinman
Affiliation:
kleinman@mail.utexas.edu, The University of Texas, Austin, TX, 78712, United States
Alexander A. Demkov
Affiliation:
demkov@physics.utexas.edu, The University of Texas, Austin, TX, 78712, United States
Get access

Abstract

We present a theoretical study of the electronic structure, surface energies and work functions of orthorhombic Pt monosilicide and germanides of Pt, Ni, Y and Hf within the framework of density functional theory (DFT). Our calculated bulk structures are within 1-2% of reported experimental values. Calculated work functsions for the (001) surfaces of PtSi, NiGe and PtGe are 5.12, 4.57 and 4.83 eV, respectively, suggesting that these metals and their alloys can be used as self-aligned contacts to p-type silicon and germanium. Work functions for Y and Hf germanides range from 2.4 to 4.3 eV making them a possible n-type contact material. In addition, we also report an ab-initio calculation of the Schottky-barrier height at the Si(001)/PtSi(001) interface. The p-type Schottky barrier height of 0.28 eV is found in good agreement with predictions of a simple metal induced gap states (MIGS) theory and available experiment. This low barrier suggests PtSi as a low contact resistance junction metal for silicon CMOS technology. We identify the growth conditions necessary to stabilize this orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T., and Lochtefeld, A., J. Appl. Phys. 97, 011101 (2005).Google Scholar
2. Zhang, S. and Ostling, M., Crit. Rev. in Solid State and Mat. Sci. 28, 1 (2003).Google Scholar
3. Detavernier, C., Özcan, A.S., Jordan-Sweet, J., Stach, E. A., Tersoff, J., Ross, F. M. and Lavoie, C., Nature 426, 641 (2003).Google Scholar
4. Detavernier, C. and Lavoie, C., Appl. Phys. Lett. 84, 3549 (2004).Google Scholar
5. Taylor, W. J., Rendon, M. J., Verret, E., Jiang, J., Capasso, C., Sing, D., Nguyen, J. Y., Smith, J., Luckowski, E., Martinez, A., Schaeffer, J., Phil Tobin, Mat. Res. Soc. Symp. Proc. Vol.810 (2004).Google Scholar
6. Iwai, J., Ohguro, T., and Ohmi, S., Microel. Eng. 60, 157 (2002).Google Scholar
7. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
8. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
9. Kresse, G. and Furtmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
10. Graber, E. J., Baughman, R. J., and Morosin, B., Acta. Crys. B 29, 1991 (1973).Google Scholar
11. Niranjan, M. K., Zollner, S., Kleinman, L., and Demkov, A. A., Phys. Rev. B 73, 195332 (2006).Google Scholar
12. Niranjan, M. K., Kleinman, L., and Demkov, A. A. (submitted to Phys. Rev. B)Google Scholar
13. Zhang, X., Demkov, A. A., Li, H., Hu, X., Wei, Y., Kulik, J., Phys. Rev. B 68, 125323 (2003).Google Scholar
14. Chin, V. W., Green, M. A., and Storey, J. W. V., Solid-State Electron. 36, 1107 (1993).Google Scholar
15. Michaelson, H. B., J. Appl. Phys. 48, 4729 (1977).Google Scholar
16. Moffatt's Handbook of Binary Phases, Vol.3 (Genium Publishing Corporation).Google Scholar
17. Schmidt, F. A., McMasters, O. D. and Carlson, O. N., J. Less-Common Met. 26, 53 (1972).Google Scholar
18. Smith, J. F. and Bailey, D. M., Acta. Cryst. 10, 341 (1957).Google Scholar
19. Niranjan, M. K., Kleinman, L., and Demkov, A. A. (unpublished).Google Scholar
20. Graeber, E. J., Baughman, R. J., and Morossin, B., Acta Cryst. B 29, 1991 (1973).Google Scholar
21. Spann, J. Y., Anderson, R. A., Thornton, T. J., Harris, G., Tracy, C., IEEE Electron Device Lett. 26, 151 (2005).Google Scholar
22. Baker, B. G., Johnson, B. B. and Maire, G. L. C., Surf. Sci. 24, 572 (1971).Google Scholar
23. Kiskinova, M., Pirug, G., and Bonzel, H. P., Surf. Sci. 133, 321 (1983).Google Scholar
24. Kittel, C., Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).Google Scholar