Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:20:06.632Z Has data issue: false hasContentIssue false

Thermal Stability of EL2 in GaAs

Published online by Cambridge University Press:  26 February 2011

X. Boddaert
Affiliation:
Laboratoire de Physique des Solides, UA 253, ISEN 41, Bd Vauban, 59046 LILLE (France)
X. Letartre
Affiliation:
Laboratoire de Physique des Solides, UA 253, ISEN 41, Bd Vauban, 59046 LILLE (France)
D. Stievenard
Affiliation:
Laboratoire de Physique des Solides, UA 253, ISEN 41, Bd Vauban, 59046 LILLE (France)
J. C. Bourgoin
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure Université de Paris 7, Tour 23, 2 Place Jussieu, 75256 Paris (France)
Get access

Abstract

Different samples originating from the same LEC ingot have been used in order to determine the variation of the EL2 concentration versus depth after different types of thermal annealing ( 450 and 850°C : the temperatures generally used in technological processes ). The annealing of EL2 near the surface at 850°C has been interpreted as the result of the deviation from the stoichiometry near the surface, due to [As] variation induced by vacancy diffusion. At 450°C, the annealing of EL2 can only be explained by the dissociation of a complex, followed by the migration of one of the constituants, confirming that the EL2 defect is the complex AsGa- Asi.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Matsui, M. and Kazuno, T.: Appl. Phys. Lett. 51,658 (1987)CrossRefGoogle Scholar
2) Hiramoto, T., Mochizuki, Y. and Ikoma, T.: Jpn. J. Appl. Phys. 25,830 (1986)CrossRefGoogle Scholar
3) Dansas, P.: J. Appl. Phys. 58,2212 (1985)Google Scholar
4) Look, D.C. and Pomrenke, G.S.: J. Appl. Phys. 54,3249 (1983)CrossRefGoogle Scholar
5) Chiang, S.Y. and Pearson, G.L.: J. Appl. Phys. 46,2986 (1975)Google Scholar
6) Day, D.S., Oberstar, J.D., Drummond, T.J., Morkoc, H., Cho, A.Y. and Streetman, B.G.: J. of Electronic Materials, Vol 10, N°3 (1981)Google Scholar
7) Martin, G.M. and Makram Ebeid, S.: Deep centers in semiconductors, ed. by Pantelides, S. (Gordon & Breach Sc. Publ., New York) 1986 p. 399 Google Scholar
8) Holmes, D.E., Chen, R.T., Elliot, K.R. and Kirkpatrick, C.G.: Appl. Phys. Lett. 40,46 (1982)Google Scholar
9) Hasegawa, F., Majerfeld, A.: Electron. Letters 12,52 (1976)Google Scholar
10) von Bardeleben, H.J., Stievenard, D., Deresmes, D., Huber, A. and Bourgoin, J.C: Phys. Rev. B 34,7192 (1986)Google Scholar
11) Stievenard, D., Boddaert, X. and Bourgoin, J.C.: Phys. Rev. B 34, 4048 (1986)Google Scholar
12) Pons, D. and Bourgoin, J.C.: J. Phys. C , Solid State Phys. 18,3839 (1985)Google Scholar
13) Bourgoin, J.C., von Bardeleben, H.J. and Stievenard, D.: J. Appi. Phys. Nov 1988 Google Scholar