Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:48:35.885Z Has data issue: false hasContentIssue false

Thermal Transport Properties of Nanostructures Immobilized Substrates

Published online by Cambridge University Press:  31 January 2011

Hugh H. Richardson
Affiliation:
richards@helios.phy.ohiou.edu, Ohio University, Chemistry and Biochemistry, 231 Clippinger Laboratories, Athens, Ohio, 45701, United States, 740-517-8488, 740-593-0148
Alyssa C. Thomas
Affiliation:
at137999@ohio.edu, Ohio, Chemistry and Biochemistry, 45701, Ohio, United States
Michael T. Carlson
Affiliation:
mc105600@ohio.edu, Ohio, Chemistry and Biochemistry, 45701, Ohio, United States
Alexander O. Govorov
Affiliation:
govorov@helios.phy.ohiou.edu, Ohio University, Physics and Astronomy, Athens, Ohio, United States
Get access

Abstract

We characterize a temperature sensor made from Erbium ions embedded in an amorphous AlGaN matrix that is accessed remotely by measuring the relative intensities from photoluminescence peaks of Er3+. We use this sensor to measure the nanoscale temperature around an optically excited single gold nanoparticle that has been immobilized on the AlGaN substrate. The maximum temperature increase measured experimentally is 8.3 K. The temperature measurement is diffraction limited by our microscope to 490 nm. This temperature corresponds theoretically to a maximum local temperature increase of 22 K. A straight-forward analysis using energy balance gives the thermal conductivity of the amorphous AlGaN substrate as 4.5 W/m-K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Govorov, A. O. and Richardson, H. H. Nano Today 2, 3038 (2007).Google Scholar
2 Richardson, H. H. Thomas, A. C. Carlson, M. T. Kordesch, M. E. and Govorov, A. O., Journal Of Electronic Materials 36, 15871593 (2007).Google Scholar
3 Richardson, H. H. Hickman, Z. N. Govorov, A. O. Thomas, A. C. Zhang, W. and Kordesch, M. E. Nano Letters 6, 783788 (2006).Google Scholar
4 Richardson, H. H. Carlson, M. T. Tandler, P. J. Hernandez, P. and Govorov, A. O. Nano Letters 9, 11391146 (2009).Google Scholar
5 Govorov, A. O. Zhang, W. Skeini, T. Richardson, H. Lee, J. and Kotov, N. A. Nanoscale Research Letters 1, 8490 (2006).Google Scholar
6 Chen, H. Chen, K. Y. Drabold, D. A. and Kordesch, M. E. Applied Physics Letters 77, 11171119 (2000).Google Scholar
7 Garter, M. J. and Steckl, A. J. IEEE Transactions On Electron Devices 49, 4854 (2002).Google Scholar
8 Weisstein, E. W. in From MathWorld--A Wolfram Web Resource.Google Scholar