Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:02:11.288Z Has data issue: false hasContentIssue false

The thermodynamic stability of three near-degenerate phases of platinum dioxide

Published online by Cambridge University Press:  01 February 2011

Shuping Zhuo
Affiliation:
School of Chemical Engineering, Shandong University of Technology, Zibo 255049, P.R. China Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A.
Karl Sohlberg
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, PA 19104, U.S.A.
Get access

Abstract

The thermodynamic stability of the three nearly energy degenerate crystal structures of PtO2 is studied here with first-principles-based calculations of their free energies. For P = 0 the α-(CdI2) structure is the thermodynamically stable phase at low temperature, while the β-(CaCl2) structure is stable at high pressure. The β'-(rutile) structure represents an unstable fixed point on the potential energy surface, or is possibly just barely bound. These results reconcile seemingly contradictory findings and answer longstanding questions about PtO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sabourault, N., Mignani, G., Wagner, A., and Mioskowski, C., Organic Letters 4(13), 2117 (2002).Google Scholar
2. Jin, Z.S., Xi, C.J., Zeng, Q.M., Yin, F., Zhao, J.Z., and Xue, J.Z., Journal of Molecular Catalysis A-Chemical 191(1), 61 (2003).Google Scholar
3. Maya, L., Riester, L., Thundat, T., and Yust, C.S., Journal of Applied Physics 84(11), 6382 (1998).Google Scholar
4. Muller, O., Roy, R., Journal of the Less-Common Metals 16, 129 (1968).Google Scholar
5. Shishakov, N.A., Soviet Phys.-Cryst., 2, 677 (1957).Google Scholar
6. Busch, R. H., Galloni, E.E., Raskovan, J. and Cairo, A.E., An. Acad. Brasil. Cienc. 24, 185 (1952).Google Scholar
7. Hoekstra, H.R., Siegel, S., and Gallagher, F.X., Adv. Chem. Ser. 98, 39 (1971).Google Scholar
8. Mansour, A.N., Sayers, D.E., Cook, J.W. Jr, Short, D.R., Shannon, R.D., and Katzer, J.R., J. Phys. Chem. 88, 1778 (1984).Google Scholar
9. Shannon, R.D., Solid State Communications 6, 139 (1968).Google Scholar
10. Siegel, S., Hoekstra, H.R., and Tani, B.S., J. Inorg. Nucl. Chem. 31, 3803 (1969).Google Scholar
11. Schwartz, K.B., K.B., , Gillson, J.L., and Shannon, R.D., J. Crystal Growth 60, 251 (1982).Google Scholar
12. Range, K.J., Rau, F., Klement, U., and Heyns, A.M., Mat. Res. Bull. 22, 1541 (1987).Google Scholar
13. Fernandez, M.P.H., Chamberland, B.L., J. Less-Common Metals 99, 99 (1984).Google Scholar
14. Dai, D., Koo, H.J., Whangbo, M.H., Soulard, C., Rocquefelte, X., and Jobic, S., Jouranl of Solid State Chemistry 173, 114 (2003).Google Scholar
15. Soulard, C., Rocquefelte, X., Jobic, S., Dai, D., Koo, H.J., and Whangbo, M.H., Journal of Solid State Chemistry 175(2), 353 (2003).Google Scholar
16. Wu, R.Q., Weber, W.H., Journal of Physics-Condensed Matter 12(30), 6725 (2000).Google Scholar
17. Weber, W.H., Graham, G.W., and Mcbride, J.R., Phys. Rev. B, 42(17), 10969 (1990).Google Scholar
18. Reuter, K., Scheffler, M., Phys. Rev. B 65, 035406 (2002).Google Scholar
19. Kohn, W., Sham, L.J., Phys. Rev. B 140A, 1133 (1965).Google Scholar
20. Perdew, J.P., Phys. Rev. B, 33, 8822 (1986).Google Scholar
21. Perdew, J.P., Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
22. Paynew, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Reviews of Modern Physics 64(4), 1045 (1992).Google Scholar
23. Vanderbilt, D., Phys. Rev. B, 41, 7892 (1990).Google Scholar
24. Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
25. Kubo, R., Nagamiya, T., “Lattice Vibration,” Solid State Physics. (McGraw-Hill Book Co. Inc., 1969) pp.3264.Google Scholar
26. Born, M and Huang, K, Dynamical Theory of Crystal Lattices (Oxford University Press, London, 1954)pp166212.Google Scholar
27. Califano, S., “Vibrational States” (Wiley, 1976) pp.1631.Google Scholar
28. Green, A., Humphreys, J., and Mackenzie, R., Introduction to point defects. (1997).Google Scholar