Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T11:07:38.239Z Has data issue: false hasContentIssue false

Thermomechanical modelling of high power laser diode degradation

Published online by Cambridge University Press:  11 July 2012

J. Anaya
Affiliation:
Física de la Materia Condensada, Universidad de Valladolid, Paseo de Belén 1, ed.i+d, 47011 Valladolid, Spain
A. Martin-Martin
Affiliation:
Física de la Materia Condensada, Universidad de Valladolid, Paseo de Belén 1, ed.i+d, 47011 Valladolid, Spain
J. Souto
Affiliation:
Física de la Materia Condensada, Universidad de Valladolid, Paseo de Belén 1, ed.i+d, 47011 Valladolid, Spain
P. Iñiguez
Affiliation:
Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid, Spain.
J. Jimenez
Affiliation:
Física de la Materia Condensada, Universidad de Valladolid, Paseo de Belén 1, ed.i+d, 47011 Valladolid, Spain
Get access

Abstract

Catastrophic degradation of high power laser diodes is due to the generation of extended defects during the laser operation. The stress necessary for is induced by temperature gradients generated by local enhancement of the temperature due to non radiative recombination and subsequent laser self absorption. The thermal stresses induced by such temperature gradient are calculated using finite element methods, showing that the yield strength can be surpassed. The thermal conductivity of the laser structure is shown to play a relevant role in the process.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waters, R.G.; Prog. Quantum Electron. 15, 422 (1992)Google Scholar
2. Tomm, J. W., Jiménez, J., Quantum Well Laser Array Packaging (MacGraw-Hill, New York, 2006).Google Scholar
3. Hakki, B. W., Nash, F. R.; J. Appl. Phys. 45, 3907 (1974).Google Scholar
4. Henry, C. H., Petroff, P. M, Logan, R.A., Merritt, F. R.; J. Appl. Phys. 50, 3721 (1979).Google Scholar
5. Andrianov, A. V., Dods, S. R. A., Morgan, J., Orton, J. W. Benson, T. M., Harrison, I., Larkins, E. C., Daiminger, F. X., Vassilakis, E., Hirtz, J. P.; J. Appl. Phys. 87, 3227 (2000).Google Scholar
6. Kimerling, L. C.; Solid-State Electron. 21, 1391 (1978).Google Scholar
7. Martín-Martín, A., Avella, M., Iñiguez, M. P., Jiménez, J., Oudart, M., Nagle, J.; J. Appl. Phys.106, 073105 (2009)Google Scholar
8. Adachi, S., J. Appl. Phys. 58(3), R1, 1985.Google Scholar
9. Landolt, M. and Börnstein, J., Numerical Data and Functional Relationships in Science; Martienssen, W., Warlimont, H. (eds.), Springer Handbook of Condensed Matter and Materials Data (Springer Berlin Heidelberg 2005).Google Scholar
10. Liang, L.H., Li, B.; Phys.Rev.B 73, 153303 (2006)Google Scholar
11. Martín-Martín, A., Iñiguez, M. P., Jiménez, J., Oudart, M., Nagle, J.; J.Appl. Phys. 110, 033113 (2011)Google Scholar
12. Swaminathan, V., Copley, S. M.; J. Am. Ceram. Soc. 58, 482 (1975).Google Scholar
13. Suzuki, T., Yasutomi, T., Tokuoka, T., Yonenaga, I.; Philos. Mag. A 79, 2637 (1999).Google Scholar