Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:37:36.286Z Has data issue: false hasContentIssue false

Thickness Dependence of Transport Properties of Epitaxial SrRuO3 Thin Films Grown on SrTiO3 Substrates

Published online by Cambridge University Press:  17 March 2011

G. Herranz
Affiliation:
Institut de Ciència de Materials de Barcelona – CSIC. Campus UAB, Bellaterra 08193., SPAIN
F. Sánchez
Affiliation:
Institut de Ciència de Materials de Barcelona – CSIC. Campus UAB, Bellaterra 08193., SPAIN
M.V. García-Cuenca
Affiliation:
Institut de Ciència de Materials de Barcelona – CSIC. Campus UAB, Bellaterra 08193., SPAIN
C. Ferrater
Affiliation:
Institut de Ciència de Materials de Barcelona – CSIC. Campus UAB, Bellaterra 08193., SPAIN
M. Varela
Affiliation:
Institut de Ciència de Materials de Barcelona – CSIC. Campus UAB, Bellaterra 08193., SPAIN
B. Martínez
Affiliation:
Dept. de Física Aplicada i Òptica, Universitat de Barcelona, Avda. Diagonal 647, Barcelona 08028., SPAIN
J. Fontcuberta
Affiliation:
Dept. de Física Aplicada i Òptica, Universitat de Barcelona, Avda. Diagonal 647, Barcelona 08028., SPAIN
Get access

Abstract

To study the effect of the film/substrate interface in thin films we have analyzed the thickness dependence of the transport properties of SrRuO3 films grown on SrTiO3 substrates. Our data makes evident the failure of the so-called deadlayer model to describe the observed thickness dependence of the conductivity. This is interpreted as due to a non-monotonous change of microstructure as thickness increases. Indeed, Atomic Force Microscopy studies indicate substantial modifications of the growth mechanism with thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. - Jin, S. et al. , Science 246, 413 (1994)Google Scholar
2. - Klein, L. et al. , Appl. Phys. Lett. 66, 2427 (1995)Google Scholar
3. - Cao, G., McCall, S., Shepard, M., and Crow, J. E., Phys. Rev. B, 56 (1), 321329 (1997)Google Scholar
4. - Longo, J. M., Raccah, P. M., and Goodenough, J. B., J. Appl. Phys. 39, 1327 (1968)Google Scholar
5. - Callaghan, A., Moeller, C. W., and Ward, R., Inorg. Chem., 5, 1572 (1966)Google Scholar
6. - Izumi, M., Nakazawa, K., Bando, Y., Yoneda, Y., Terauchi, H., Solid State Ionics, 108, 227233 (1998)Google Scholar
7. - Gan, Q. et al. , Appl. Phys. Lett., 72 (8), 978980 (1998)Google Scholar
8. - Chen, C. L. et al. , Appl. Phys. Lett., 71 (8), 10471049 (1997)Google Scholar
9. - Gausepohl, S. C. et al. , Physical Review B 52 (5), 34593465 (1995)Google Scholar
10. - Izumi, M., Nakazawa, K., Bando, Y., Journal of the Phys. Soc. of Japan, 67 (2), 651 (1998)Google Scholar
11. - Cao, G., McCall, S., Shepard, M., and Crow, J. E., Phys. Rev. B, 56 (1), 321329 (1997)Google Scholar
12. - Shikano, M., Huang, T., Inaguma, Y., Itoh, M., Nakamura, T., Solid State Comm., 90 (2), 115119 (1994)Google Scholar
13. - Klein, L. et al. , J. Phys.: Condens. Matter 8, 10111, 10126 (1996)Google Scholar