Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:12:55.375Z Has data issue: false hasContentIssue false

Thin Film Growth

Published online by Cambridge University Press:  25 February 2011

R. W. Vook*
Affiliation:
Syracuse University, Physics Department, 201 Physics Bldg., Syracuse, NY 13244–1130
Get access

Abstract

A review of the experimental and theoretical results describing thin film growth modes is presented. Thermodynamic criteria for determining which growth mode might be expected to occur in a particular case along with some kinetic considerations are given. The characteristics of each of the three principal growth modes, namely Frank and van der Merwe (layer), Stranski-Krastanov (layer plus island), and Volmer-Weber (island), are discussed. Lastly, the requirements favoring the growth of epitaxial multilayers are briefly considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vook, R.W., International Metals Reviews 27, 209 (1982); Optical Engineering 23, 343 (1984).Google Scholar
2.Bunshah, R.F., in Deposition Technologies for Films and Coatings, edited by Bunshah, R.F. (Noyes Publications, Park Ridge, NJ, 1982), p. 83.Google Scholar
3.Guenther, K.H., Proc. SPIE 346, 9 (1982).Google Scholar
4.Takayanagi, K., Proc. 10th International Congress on Electron Microscopy, Hamburg (Deutsche Gesellschaft fur Electron Mikroskopie, Frankfurt, FRG, 1982) p. 287.Google Scholar
5.Macur, J.E. and Vook, R.W., Thin solid Films 66, 371 (1980).Google Scholar
6.Hartig, K., Janssen, A.P., and Venables, J.A., Surface Sci. 74, 69 (1978).Google Scholar
7.Ho, J. H. and Vook, R. W., Phil. Mag. 36, 1051 (1977); J. Crystal Growth 44, 561 (1978).Google Scholar
8.Bauer, E., Z. Kristallographie 110, 372 (1958).Google Scholar
9.Bauer, E. and Merwe, J. H.van der, Phys. Rev. B33, 3657 (1986).Google Scholar
10.Matthews, J. W., Jackson, D. C., and Chambers, A., Thin Solid Films 26, 129 (1975).Google Scholar
11.Horng, C. T. and Vook, R. W., J. Vacuum Sci. and Technol. 10, 160 (1973); 11 140 (1974).Google Scholar
12.Gradmann, U., Kummerle, W., and Tillmanns, P., Thin Solid Films 34, 249 (1976); U. Gradmann and P. Tillmanns, Phys. Stat. Solid. 44a, 539 (1977).Google Scholar
13.Markov, I. and Kaischew, R., Thin Solid Films 32, 163 (1976); Kristall Techn. 11 685 (1976).Google Scholar
14.Bauer, E., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, edited by King, D. A. and Woodruff, D. P. (Elsevier, Amsterdam 1984), Vol. III B, P.1.Google Scholar
15.Rhead, G. E., Contemp. Phys. 24, 535 (1983).Google Scholar
16.Markov, I. and Stoyanov, S., Contemp. Phys. 28, 267 (1987).Google Scholar
17.Frank, F.C. and Merwe, J.H.Van der, Proc. Roy. Soc. London, A198, 205 (1949); 198, 216 (1949); 200, 125 (1949); J. Appl. Phys. 34, 117, 123 (1963).Google Scholar
18.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 32, 265 (1976).Google Scholar
19.Macur, J.E., 33rd Ann. Proc. Electron Microscopy Soc. Amer., Las Vegas, Nev. (Bailey, G.W., ed.) 98 (1975).Google Scholar
20.Vook, R.W. and Chao, S.S., Thin Solid Films 58, 203 (1979).Google Scholar