Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:05:42.709Z Has data issue: false hasContentIssue false

Third Order Mode Optically Pumped Semiconductor Laser for an Integrated Twin Photon Source in Quantum Optics

Published online by Cambridge University Press:  21 March 2011

N. G. Semaltianos
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
A. De Rossi
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
V. Berger
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
B. Vinter
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
E. Chirlias
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
V. Ortiz
Affiliation:
Thales Research and Technology Domaine de Corbeville 91404 Orsay, FRANCE
Get access

Abstract

Lasing action on a third order waveguide mode is demonstrated at room temperature under optical pumping, in a specifically designed quantum well laser structure. The AlGaAs heterostructure involves barriers which ensure that the third order mode has a higher overlap with the single quantum well emitter than the fundamental mode. Third order mode operation of a laser structure opens the way to modal phase matched parametric down conversion inside the semiconductor laser itself. It is a first step towards the realization of semiconductor twin photon laser sources, needed for quantum information experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kwiat, P. G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A. V. and Shih, Y., Phys. Rev. Lett. 75, 4337 (1995).Google Scholar
2. Bouwmeester, D., Pan, J-W., Mattle, K., Eibl, M., Weifurter, H. and Zeilinger, A., Nature 390, 575 (1997).Google Scholar
3. Pan, J. W., Bouwmeester, D., Daniell, M., Weinfurter, H. and Zeilinger, A., Nature 403, 515 (2000).Google Scholar
4. Yariv, A., “Quantum Electronics” (John Wiley & Sons, New York, 1989).Google Scholar
5. Fiore, Berger, V., Rosencher, E., Bravetti, P. and Nagle, J., Nature 391, 463 (1998).Google Scholar
6. Jäger, M., Stegeman, G. I., Flipse, M. C., Diemeer, M. and Möhlmann, G., Appl. Phys. Lett 69, 4139 (1996).Google Scholar
7. Wagner, H. P., Wittmann, S., Schmitzer, H. and Stanzl, H., J. Appl. Phys. 77, 3637 (1995).Google Scholar
8. Dallesasse, J. M., Holonyak, J. N., Jr., Sugg, A. R., Richard, T. A., Appl. Phys. Lett. 57, 2844 (1990).Google Scholar
9. Takamori, T., Takemasa, K., Kamijoh, T., Appl. Phys. Lett. 69, 659 (1996).Google Scholar
10. Casey, H. C. and Panish, M. B., “Heterostructure Lasers”, Academic, New York, Ch. 7 (1978).Google Scholar
11. Nakanishi, K., Suemune, I., Fujii, Y., Kuroda, Y. and Yamanishi, M., Appl. Phys. Lett. 59, 1401 (1991).Google Scholar
12. Born, M. and Wolf, E., “Principles of Optics”, (Pergamon Press, Oxford, 1980).Google Scholar