Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:15:03.977Z Has data issue: false hasContentIssue false

Time Resolved Reflectivity Measurements Applied to Rapid Isothermal Annealing of Ion Implanted Silicon

Published online by Cambridge University Press:  25 February 2011

P. J. Timans
Affiliation:
Microelectronics Research Laboratory, Cambridge University, Cambridge Science Park, Milton Road, Cambridge CB4 4BH, U.K.
R. A. McMahon
Affiliation:
Microelectronics Research Laboratory, Cambridge University, Cambridge Science Park, Milton Road, Cambridge CB4 4BH, U.K.
H. Ahmed
Affiliation:
Microelectronics Research Laboratory, Cambridge University, Cambridge Science Park, Milton Road, Cambridge CB4 4BH, U.K.
Get access

Abstract

The annealing of ion implantation damage in silicon by rapid isothermal heating has been monitored by the time resolved reflectivity (TRR) method. This technique was applied simultaneously at a wavelength of 632.8nm and also at 1152nm, where the optical absorption coefficient of silicon is less. The two wavelength method simplifies the interpretation of TRR results, extends the measurement depth and allows good resolution of the position of the interface between amorphous and crystalline silicon. The regrowth of amorphous layers in silicon, created by self implantation and implanted with electrically active impurities, was observed. Regrowth in rapid isothermal annealing occurs during the heating up stage of typical thermal cycles. Impurities such as B, P, and As increase the regrowth rate in a manner consistent with a vacancy model for regrowth. The maximum regrowth rate in boron implanted silicon is limited by the solid solubility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys., 48, 4234 (1977).CrossRefGoogle Scholar
2. Kennedy, E. F., Csepregi, L., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys., 48, 4241 (1977).CrossRefGoogle Scholar
3. Olson, G. L., Roth, J. A., Hess, L. D. and Narayan, J., in Energy Beam-Solid Interactions and Transient Thermal Processing, Fan, J. C. C. and Johnson, N. M., Eds., (North Holland, New York, 1984) pp 375382.Google Scholar
4. Olson, G. L., Kokorowski, S. A., Roth, J. A. and Hess, L. D., in Laser-Solid Interactions and Transient Thermal Processing, Narayan, J., Brown, W. L. and Lemons, R. A., Eds., (North Holland, New York, 1983) pp 141154.Google Scholar
5. McMahon, R. A., Ahmed, H., Godfrey, D. and Yallup, K. J., IEEE Trans. Electron Devices, ED–30, 1550 (1983).CrossRefGoogle Scholar
6. Olson, G. L., Kokorowski, S. A., McFarlane, R. A. and Hess, L. D., Appl. Phys. Lett., 37, 1019 (1980).CrossRefGoogle Scholar
7. Beers, A. M., Hintzen, H. T. J. M. and Bloem, J., J. Electrochem. Soc., 130, 1426 (1983).CrossRefGoogle Scholar
8. Suni, I., Göltz, G., Nicolet, M.-A. and Lau, S. S., Thin Solid Films, 93, 171 (1982).CrossRefGoogle Scholar