Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:56:38.665Z Has data issue: false hasContentIssue false

Ti-Salicide Improvement by Preamorphization for ULSI Applications

Published online by Cambridge University Press:  15 February 2011

Chun-Cho Chenl
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Q. F. Wang
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Franky Jonckx
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Jyh-Shyang Jenq
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Karen Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

To improve Ti SALICIDE process, Si preamorphization by arsenic before Ti sputtering has been studied in two parts: process characterization and fundamental studies. Sheet resistance (Rs) reduction by the preamorphization is more pronounced on thinner and narrower-line silicide formation. At 60keV implantation energy, there is an optimum arsenic dose for the improvement. Through the treatment, more uniform silicide layer can be formed, indicated by the improved Rs uniformity. In the fundamental study, preamorphization appears to have little effect on promoting C49-to-C54 phase transformation. It is suggested that the treatment is able to enhance the reaction rate between Ti and amorphous Si, and results in C54-TiSi2 with larger grains and consequently slightly lower resistivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alperin, M.E., Hollaway, T., Haken, R.A., Gosmeyer, C.D., Kamaugh, R.V. and Parmantie, W.D., IEEE Trans. Electron. Devices, ED-32, 141(1985).Google Scholar
[2] Mann, R.W. and Clevenger, L.A., J. Electrochem. Soc., 141, 1347(1994).Google Scholar
[3] Scott, D.B., Chapman, R.A., Wei, C., Mahant-Shetti, S.S., Haken, R.A. and Holloway, T.C., IEEE Trans. Electron. Devices, ED-34, 562(1987).Google Scholar
[4] Beyers, R., Coulman, D. and Merchant, P., J. Appl. Phys., 61, 5110(1987).Google Scholar
[5] Park, H.K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci. Technol. A2(2), 264(1984).Google Scholar
[6] Ohguro, T., Nakamura, S., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M., and Iwai, H., IEEE Trans. Electron. Devices, ED-41, 2305(1994).Google Scholar
[7] Sakai, I., Abiko, H., Kawaguchi, H., Hirayama, T., Johansson, L.E.G. and Okabe, K., Proceedings of Symposeum on VLSI Technology, 66(1992).Google Scholar
[8] Mogami, T., Wakabayashi, H., Saito, Y., Matsuki, T., Tatsumi, T. and Kunio, T., Proceedings of Symposeum on VLSI Technology, 687(1994).Google Scholar
[9] Horiuchi, T., Wakabayashi, H., Ishigami, T., Nakamura, H., Mogami, T., Kunio, T. and Okumura, K.,.Proceedings of Symposeum on VLSI Technology, 121(1994).Google Scholar
[10] Fujii, K., Kikuta, K. and Kikkawa, T., Proceedings of Symposeum on VLSI Technology, 57(1995).Google Scholar
[11] Xiao, Z.G., Jiang, H., Honeycutt, J., Osbum, C.M., McGuire, G. and Rozgonyi, G.A., Materials Research. Society. Proceedings, vol. 181, 167(1990).Google Scholar
[12] Lithomap, Trademark of Prometrix Corporation, Santa Clara, CA 95054, USA.Google Scholar