Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T07:47:07.712Z Has data issue: false hasContentIssue false

Towards a Silicate Matrix for the Immobilisation of Halide-rich Wastes

Published online by Cambridge University Press:  30 July 2013

M. R. Gilbert*
Affiliation:
AWE, Aldermaston, Reading, RG7 4PR, UK.
Get access

Abstract

Single-phase calcium chlorosilicate and sodalite, two potential ceramic waste-forms for the immobilisation of CaCl2-based pyroprocessing wastes, have been fabricated at temperatures below the volatilisation point of CaCl2. Solid solutions doped with Sm3+ as an inactive analogue for trivalent actinides have been fabricated and characterised. XRD analysis shows both phases will successfully accommodate Sm3+, with the sodalite in particular remaining single-phase. Fabrication of Sm-doped calcium chlorosilicate in air results in the formation of SmOCl and Ca(Si2O5) secondary phases, however, calcination in an inert atmosphere is shown to successfully retard the formation of SmOCl allowing for higher levels of doping.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nishimure, T., Koyama, T., Iizuka, M., Tanaka, H., Prog. Nucl. Energy, 32, 381 (1998).CrossRefGoogle Scholar
Taylor, I. N., Thompson, M. L., Johnson, T. R., Proceedings of the International Conference and Technology Exposition on Future Nuclear, 1, 690 (1993).Google Scholar
Lee, W. E., Grimes, R. W., Energy Materials, 1, 22 (2006).CrossRefGoogle Scholar
Sandland, T.O., Du, L.-S., Stebbins, J.F., Webster, J.D., Geochim. Cosmochim. Acta, 68, 5059 (2004).CrossRefGoogle Scholar
Treushnikov, E. N., Ilyukhin, V. V., Belov, N. V., Doklady Akademii Nauk SSSR, 193, 1048 (1970).Google Scholar
Czaya, R., Bissert, G., Kristall und Technik, 5, 9 (1970).CrossRefGoogle Scholar
Czaya, R., Z. Anorg. Allg. Chem., 372, 353 (1970).Google Scholar
Czaya, R., Bissert, G., Acta Cryst. B, 27, 747 (1971).CrossRefGoogle Scholar
Leturcq, G., Grandjean, A., Rigaud, D., Perouty, P., Charlot, M., J. Nucl. Mater., 347, 111 (2005).CrossRefGoogle Scholar
Rouguerol, J., Anvir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D., Sing, K. S. W., Unger, K. K., Pure Appl. Chem., 66, 1739 (1994).CrossRefGoogle Scholar
Lewis, M. A., Pereira, C., US Patent No. 5,613,240, (18 Mar 1997).Google Scholar
Pereira, C., ANL/CMT/CP–84675, (1996).Google Scholar
Priebe, S., Nucl. Tech., 162, 199 (2008).CrossRefGoogle Scholar
De Angelis, G., Bardez-Giboire, I., Mariani, M., Capone, M., Chartier, M., Macerata, E., Mater. Res. Soc. Symp. Proc., 1193, 7378 (2009).CrossRefGoogle Scholar