Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T01:55:58.996Z Has data issue: false hasContentIssue false

Transparent Lu2O3:Eu Ceramics

Published online by Cambridge University Press:  27 July 2011

Zachary M. Seeley
Affiliation:
Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-9698, U.S.A.
Joshua D. Kuntz
Affiliation:
Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-9698, U.S.A.
Nerine J. Cherepy
Affiliation:
Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-9698, U.S.A.
Stephen A. Payne
Affiliation:
Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-9698, U.S.A.
Get access

Abstract

We are developing highly transparent ceramic oxide scintillators for high energy (MeV) radiography screens. Lutetium oxide doped with europium (Lu2O3:Eu) is the material of choice due to its high light yield and stopping power. As an alternative to hot-pressing, we are utilizing vacuum sintering followed by hot isostatic pressing (HIP). Nano-scale starting powder was uniaxially pressed into compacts and then sintered under high vacuum, followed by HIP’ing. Vacuum sintering temperature proved to be a critical parameter in order to obtain highly transparent Lu2O3:Eu. Under-sintering resulted in open porosity disabling the driving force for densification during HIP’ing, while over-sintering lead to trapped pores in the Lu2O3:Eu grain interiors. Optimal vacuum sintering conditions allowed the pores to remain mobile during the subsequent HIP’ing step which provided enough pressure to close the pores completely resulting in fully-dense highly transparent ceramics. Currently, we have produced 3 mm thick by 4.5 cm diameter ceramics with excellent transparency, and anticipate scaling to larger sizes while maintaining comparable optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikesue, A., Aung, Y., Yoda, T., Nakayama, S., Kamimura, T., Optical Materials 29, 1289 (2007).Google Scholar
2. Peuchert, U., Okano, Y., Menke, Y., Reichel, S., Ikesue, A., J. European Ceram. Soc. 29, 283 (2009).Google Scholar
3. Klement, R., Rolc, S., Mikulikova, R., Krestan, J., J. European Ceram. Soc. 28, 1091 (2008).Google Scholar
4. Cherepy, N., Payne, S., Asztalos, S., Hull, G., Kuntz, J., Niedermayr, T., Pimputkar, S., Roberts, J., Sanner, R., Tillotson, T., Loef, E., Wilson, C., Shah, K., Roy, U., Hawrami, R., Burger, A., Boatner, L., Choong, W., Moses, W., IEEE Tran. Nuc. Sci., 56, 873 (2009).Google Scholar
5. Farman, T. T., Vandre, R. H., Pajak, J. C., Miller, S. R., Lempicki, A., Farman, A. G., Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101, 219 (2006).Google Scholar
6. Lempicki, A., Brecher, C., Szupryczynski, P., Lingertat, H., Nagarkar, V., Tipnis, S., Miller, S., Nuc. Inst. Meth. Phys. Res. A 488, 579 (2002).Google Scholar
7. Shi, Y., Chen, Q. W., Shi, J. L., Optical Materials 31, 729 (2009).Google Scholar
8. Wisniewski, D. J., Boatner, L. A., Neal, J. S., Jellison, G. E., Ramey, J. O., North, A., Wisniewska, M., Payzant, A. E., Howe, J. Y., Lempicki, A., Brecher, C., Glodo, J., IEEE Trans. Nuc. Sci. 55, 1501 (2008).Google Scholar
9. Echeberria, J., Tarazona, J., He, J., Butler, T., Castro, F., J. European Ceram. Soc. 22, 1801 (2002).Google Scholar
10. German, R. M., Powder Metallurgy Science, 2 nd ed., Metal Powder Industries Federation, Ney Jersey, (1984) p. 261264.Google Scholar