No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Hydrogen transport in polycrystalline silicon was investigated by deuterium diffusion experiments. D was introduced either from a remote plasma or a solid-state source. The data can be explained by a two-level model used to explain diffusion in amorphous silicon. The energy difference between transport level and deuterium chemical potential was found to be 1.3 eV. A band of shallow levels for hydrogen trapping is located about 0.6 eV below the transport level, while deep levels are about 1.7 eV below.