Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T19:16:31.207Z Has data issue: false hasContentIssue false

Tunneling and anisotropic-tunneling magnetoresistance in iron nanoconstrictions fabricated by focused-ion-beam

Published online by Cambridge University Press:  31 January 2011

Amalio Fernandez-Pacheco
Affiliation:
fpacheco@unizar.es, Institute of Nanoscience of Aragon, Zaragoza, Spain
Jose M De Teresa
Affiliation:
deteresa@unizar.es, ICMA, CSIC-U.Zaragoza, Condensed Matter Physics Department, Facultad de Ciencias, Plaza San Francisco, Zaragoza, 50009, Spain, +34 976762463, +34 976761229
Rosa Cordoba
Affiliation:
rocorcas@unizar.es, Institute of Nanoscience of Aragon, Zaragoza, Spain
Ricardo Ibarra
Affiliation:
ibarra@unizar.es, Institute of Nanoscience of Aragon, Zaragoza, Spain
Get access

Abstract

We report the magnetoresistance (MR) measurements in a nanoconstriction fabricated by focused-ion-beam (FIB) in the tunneling regime of conductance. The resistance of the contact was controlled during the fabrication process, being stable in the metallic regime, near the conductance quantum, and under high vacuum conditions. The metallic contact was deteriorated when exposed to atmosphere, resulting in a conduction mechanism by tunneling. The TMR was found to be of 3% at 24 K. The anisotropic tunneling magnetoresistance (TAMR) was around 2% for low temperatures, with a field angle dependence more abrupt than in bulk Fe. This preliminary result is promising for the application of this technique to fabricate stable ferromagnetic constrictions near the atomic regime of conductance, where high MR values are expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Agrait, N. Yeyati, A. L. and Ruitenbeek, J. M. Van, Phys. Rep. 377, 81 (2003).Google Scholar
2 García, N., Muñoz, M., and Zhao, Y. W. Phys. Rev. Lett. 82, 2923 (1999).Google Scholar
3 Verlslujis, J. J. Bari, M. A. and Coey, J. M. D. Phys. Rev. Lett. 87, 026601 (2001).Google Scholar
4 Egelhoff, W. F. Jr. , Gan, L. Ettedgui, H. Kadmon, Y. Powell, C. J. Chen, P. J. Shapiro, A. J. McMichael, R. D. Mallett, J. J. Moffat, T. P. and Stiles, M. D. Svedberg, E. B. J. Appl. Phys 95, 7554 (2004).Google Scholar
5 Sokolov, A. Zhang, C. Tsymbal, E. Y. Redepenning, J. and Doudin, B. Nat. Nanotechnology 2, 171 (2007).Google Scholar
6 Velev, J. Sabirianov, R. F. Jaswal, S. S. and Tsymbal, E. Y. Phys. Rev. Lett. 94, 127203 (2005).Google Scholar
7 Jacob, D. Fernández-Rossier, J., and Palacios, J. J. Phys. Rev. B 77, 165412 (2008).Google Scholar
8 Shi, S. –F. and Ralph, D. C. Nat. Nanotech. 2, 522 (2007).Google Scholar
9 Doudin, B. and Viret, M. J. Phys.: Cond. Matter. 20, 083201 (2008).Google Scholar
10 Céspedes, O., Watts, S. M. and Coey, J. M. D. Appl. Phys. Lett. 87, 083102 (2005).Google Scholar
11 Khizroev, S. Hijaki, Y. Chomko, R. Mukheriee, S. Chantrell, R. Wu, X. Carley, R. Litvinov, D. Appl. Phys. Lett. 87, 083102 (2005).Google Scholar
12 Krzysteczko, P. and Dumpich, G. Phys. Rev. B 77, 144422 (2008).Google Scholar
13 Huang, T. Perzlmaier, K. and Back, C. H. Phys. Rev. B 79, 024414 (2009).Google Scholar
14 Fernández-Pacheco, A., Teresa, J. M. De, Córdoba, R., and Ibarra, M. R. Nanotechnology 19, 415302 (2008).Google Scholar
15 Obona, J. V. Teresa, J. M. De, Córdoba, R., Fernández-Pacheco, A., and Ibarra, M. R. Microel. Eng. 86, 639 (2009).Google Scholar
16 Teresa, J. M. De, Córdoba, R., Fernández-Pacheco, A., Montero, O. Strichovanec, P. and M.Ibarra, R. J. Nanomat. 2009, 936863 (2009).Google Scholar
17 Moodera, J. S. and Mathon, G. J. Magn. Mag. Mat 200, 248273 (1999).Google Scholar
18 Viret, M. Gauberac, M. Ott, F. Fermon, C. Barreteau, C. Autes, G. and López, R. Guirado, Eur. Phys. J. B 51, 1 (2006).Google Scholar