Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T05:15:39.466Z Has data issue: false hasContentIssue false

Two-Dimensional Organization of Single Crystal ZnO Nanopillars

Published online by Cambridge University Press:  01 February 2011

Jingbiao Cui
Affiliation:
jingbiao.cui@dartmouth.edu, University of Arkansas at Little Rock, Physics and Astronomy, 2801 S University Ave, Little Rock, AR, 72204, United States, 501-569-8962
Ursula J Gibson
Affiliation:
ursula.gibson@dartmouth.edu, Dartmouth College, Thayer School of Engineering, Hanover, NH, 03755, United States
Get access

Abstract

Periodically ordered ZnO nanopillar arrays were fabricated by a combination of soft templates created by e-beam lithography and an electrochemical process. Growth at 90 °C in an aqueous solution ensured compatibility with the polymethyl methacrylate used as a template material. We demonstrate that individual ZnO nanopillars with diameters around 100 nm can be precisely placed in desired locations to form two-dimensional periodic structures. This approach provides a new method for design and fabrication of ZnO photonic materials. The process is compatible with standard microfabrication techniques and may have potential applications in the manufacture of photonic and optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, M., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P. D., Adv. Mater. 13, 113 (2001).Google Scholar
2. Wang, Z. L., J. Phys.: Condens. Matter. 16, R829 (2005).Google Scholar
3. Cui, J. B., Daghlian, C. P., Gibson, U. J., Pusche, R., Geithner, P., and Ley, L., J. Appl. Phys. 97, Art. No. 044315 (2005).Google Scholar
4. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y., Saykally, R. J., and Yang, P. D., Angew. Chem. Int. Ed. 42 3031 (2003).Google Scholar
5. Cui, J. B. and Gibson, U., J. Phys. Chem. B 109, 22074 (2005).Google Scholar
6. Vayssieres, L., Adv. Mater. 15, 464 (2003).Google Scholar
7. Yang, P. D., Yan, H. Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. R., and Choi, H. J., Adv. Funct. Mater. 12, 323 (2002).Google Scholar
8. Greyson, E. C., Babayan, Y., and Odom, T. W., Adv. Mater. 16, 1348 (2004).Google Scholar
9. Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, Y. P., and Meyyappan, M., Nano Lett. 4, 1247 (2004).Google Scholar
10. Wang, X. D., Summers, C. J., and Wang, Z. L., Nano Lett. 4, 423 (2004).Google Scholar
11. Fan, H. J., Fuhrmann, B., Scholz, R., Syrowatka, F., Dadgar, A., Krost, A., and Zacharias, M., J. Cryst. Growth 287, 34 (2006).Google Scholar
12. Hsu, J. W. P., Tian, Z.R., Simmons, N. C., Matzke, C. M., Voigt, J. A., and Liu, J., Nano Lett. 5, 83 (2005).Google Scholar