Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:18:30.005Z Has data issue: false hasContentIssue false

Van der Waals Epitaxy of GaSe on GaAs(111)

Published online by Cambridge University Press:  22 February 2011

L. E. Rumaner
Affiliation:
Department of Materials Science and Engineering, FB-10, University of Washington, Seattle, WA 98195
F.S. Ohuchi
Affiliation:
Department of Materials Science and Engineering, FB-10, University of Washington, Seattle, WA 98195
Get access

Abstract

Although heteroepitaxy of lattice-matched and lattice-mismatched materials leading to artificially structured materials has resulted in impressive performance in various electronics devices, material combinations are usually limited by lattice matching constraints. A new concept for fabricating material systems using the atomically abrupt and low dimensional nature of layered materials, called van der Waals epitaxy (VDWE), has been developed. GaSe (Eg = 2.1 eV) has been deposited on the three dimensional surface of GaAs (111) using a molecular beam deposition system. GaSe was evaporated from a single Knudsen source, impinging on a heated substrate. Even with a lattice mismatch of 6% between the substrate and the growing film, good quality single crystal films were grown as determined by RHEED. The films have further been analyzed using a complementary combination of XPS and X-ray reflectivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Korma, A., Sunouchi, K., Miyajima, T., J. Vac. Sci. and Technology A, 3 (2), 724 (1985).Google Scholar
2. Saiki, K., Ueno, K., Shimada, T., Koma, A., J. of Crystal Growth, 95, 603 (1989).Google Scholar
3. Ohuchi, F.S., Parkinson, B.A., Ueno, K., Koma, A., J. Appl. Phys. 68 (5), 2168 (1990).Google Scholar
4. Parkinson, B.A., Ohuchi, F.S., Ueno, K., Koma, A., Appl. Phys. Lett., 58 (5), 472 (1991).Google Scholar
5. Ohuchi, F.S., Shimada, T., Parkinson, B.A., Ueno, K., Koma, A., J. of Crystal Growth, 111, 1033 (1991).Google Scholar
6. Spah, R., Elrod, U., Lux-Steiner, M., Bucher, E., Wagner, S., Appl. Phys. Lett, 43 (1), 79 (1983).Google Scholar
7. Spah, R., Lux-Steiner, M., Obergfell, M., Bucher, E., Wagner, S., Appl. Phys. Lett., 47 (8), 871 (1985).Google Scholar
8. Ueno, K., Abe, H., Saiki, K., Koma, A., Oigawa, H., Nannichi, Y., Surface Science, 267, 43 (1992).Google Scholar
9. Shimada, T., Ohuchi, F.S., Koma, A., Surface Science, 291, 57 (1993).Google Scholar
10. Hughes, G.J., McKinley, A., Williams, R.H., McGovern, I.T., J. Phys. C: Solid State Phys., 15, L159 (1982).Google Scholar
11. Ueno, K., Shimada, T., Saiki, K., Koma, A., Appl. Phys. Lett., 56 (4), 327 (1990).Google Scholar
12. Ueno, K., Abe, H., Saiki, K., Koma, A., Jpn. J. Appl. Phys., 30 (8A), L1352 (1991).Google Scholar
13. Koma, A., Ueno, K., Saiki, K., J. of Crystal Growth, 111, 1029 (1991).Google Scholar
14. Ludviksson, A., Rumaner, L.E., Ohuchi, F.S., Rogers, W., unpublished research.Google Scholar
15. Scimeca, T., Watanabe, Y., Berrigan, R., Oshima, M., Physical Review B, 46 (16), 10201 (1992).Google Scholar