Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-21T12:58:49.656Z Has data issue: false hasContentIssue false

research-article

Published online by Cambridge University Press:  15 March 2011

D. P. Norton
Affiliation:
Solid State Division Oak Ridge, National Laboratory, Oak Ridge, TN 37831-6056
J. D. Budai
Affiliation:
Solid State Division Oak Ridge, National Laboratory, Oak Ridge, TN 37831-6056
M. F. Chisholm
Affiliation:
Solid State Division Oak Ridge, National Laboratory, Oak Ridge, TN 37831-6056
Get access

Abstract

We describe the growth and properties of epitaxial (001) CeO2 on a (001) Ge surface using a hydrogen-assisted pulsed-laser deposition method. Hydrogen gas is introduced during film growth to eliminate the presence of the GeO2 from the semiconductor surface during the initial nucleation of the metal oxide film. The hydrogen partial pressure and substrate temperature are selected to be sufficiently high such that the germanium native oxides are thermodynamically unstable. The Gibbs free energy of CeO2 is larger in magnitude than that of the Ge native oxides, making it more favorable for the metal oxide to reside at the interface in comparison to the native Ge oxides. By satisfying these criteria, the metal oxide/semiconductor interface is shown to be atomically abrupt with no native oxide present. Preliminary structural and electrical properties are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ghandhi, S. K., “VLSI Fabrication Principles: Silicon and Gallium Arsenide,” John Wiley & Sons, New York, 1983.Google Scholar
2. Nicollian, E. H. and Brews, J. R., “MOS (Metal Oxide Semiconductors) Physics and Technology,” John Wiley & Sons, New York, 1982.Google Scholar
3. Horn, K. M., Chason, E., Tsao, J. Y., Floro, J. A., Picraux, S. T., Surface Science 320, 174184 (1994).Google Scholar
4. Surnev, L. and Tikhov, M., Surface Science 123, 505518 (1982).Google Scholar
5. McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
6. Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).Google Scholar
7. Paranthaman, M., Goyal, A., List, F. A., Specht, E. D., Lee, D. F., Martin, P. M., He, Q., Christen, D. K., Norton, D. P., Budai, J. D., and Kroeger, D. M., Physica C 275, 266 (1997).Google Scholar
8. Jang, S. H., Jung, D., and Roh, Y., J. Vac. Sci. Technol. B 16, 1098 (1998).Google Scholar
9. Koinuma, H., Nagata, J., Tsukahara, T., Gonda, S., and Yoshimoto, M., Appl. Phys. Lett. 58, 2027 (1991).Google Scholar
10. Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y., and Chang, J. H., Appl. Phys. Lett. 59, 3604 (1991).Google Scholar
11. Reed, T. B., “Free Energy of Formation of Binary Compounds,” (MIT Press, Cambridge, MA, 1971).Google Scholar
12. Atkins, P. W., “Physical Chemistry”, (Oxford University Press, Oxford, 1982)Google Scholar
13. Hubbard, K. J. and Schlom, D. G., J. Mater. Res. 11, 27572776 (1996).Google Scholar