Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T12:31:19.610Z Has data issue: false hasContentIssue false

Volume and Grain Boundary Diffusion in Ll2 Alloys with Special Reference to Ni3 Al Compounds

Published online by Cambridge University Press:  21 February 2011

T. C. Chou
Affiliation:
Department of Metallurgy and Materials Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Y. T. Chou
Affiliation:
Department of Metallurgy and Materials Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Get access

Abstract

Experiment and theory of diffusion in Ll(2) alloys are briefly reviewed. Current work on volume and grain boundary diffusion in Ni(3)Al alloys are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stolwijk, N. A., van Gend, M. and Bakker, H., Phil. Mag. A42, 783 (1980).CrossRefGoogle Scholar
2. Gangulee, A., Ho, P. S. and Tu, K. N., eds. “Lower Temperature Diffusion and Applications to Thin Films,” (Elsevier, Lausanne), 1975.Google Scholar
3. Liu, C. T. and Stiegler, J. O., Science, 226, 636 (1984).Google Scholar
4. Aoki, K. and Izumi, o., Trans. J.I.M., 19, 203 (1978).Google Scholar
5. Copley, S. M. and Kear, B. H., Trans. AIME, 239, 977 (1967).Google Scholar
6. Aoki, K. and Izumi, o., J.J.I.M., 43, 1190 (1779).Google Scholar
7. Liu, C. T. and Koch, C. C., NBSIR, 83-2679-2 (1983).Google Scholar
8. Larikov, L. N., Yatsenko, T. K., Chernaya, L. F. and Kumok, L. M., in “Mobility of Atoms in Crystal Lattices”, edited by Svechnikov, V. N., (Keter Press, Jerusalem), 1970, pp. 55.Google Scholar
9. Hancock, G. F., Phys. stat. sol. (a), 7, 535 (1971).Google Scholar
10. Bronfin, M. B., Bulatov, G. S. and Drugova, I. A., Fiz. Metal. Metalloved., 40, 363 (1975).Google Scholar
11. Larikov, L. N., in “Diffusion Processes in Ordered Alloys,” edited by Larikov, L. N., Geichenko, V.V and Fal'chenko, V. M., (Oxonian Press, New Delhi), 1981, pp. 118.Google Scholar
12. Janssen, M. M. P., Met. Trans. 4, 1623 (1972).Google Scholar
13. Janssen, M. M. P. and Rieck, G. D., Trans. AIME, 239, 1372 (1967).Google Scholar
14. Bridge, J. E. Jr. and Maniar, G. N., Met. Trans., 3, 1005 (1972).CrossRefGoogle Scholar
15. Girifalco, L. A., in “Diffusion” (ASM, Metals Park, Ohio), 1973, pp. 185.Google Scholar
16. Schoijet, M. and Girifalco, L. A., J. Phys. Chem. Solids, 29, 911 (1968).Google Scholar
17. Kikuchi, R. and Sato, R., J. Chem. Phys., 51, 161 (1969). -Google Scholar
18. Kirkwood, J., J. Chem. Phys., 6, 70 (1938).CrossRefGoogle Scholar
19. Kuper, A. B., Manning, J. R. and Tomizuka, C. T., Phys. Rev., 104, 1536 (1956).CrossRefGoogle Scholar
20. Camagni, P., Proc. 2nd Intern. Conf. on Atomic Energy, Geneva, 20, 11365 (1958).Google Scholar
21. Comagni, P., Studia Ghisleriana, Ser. IV, Vol. II, 239 (1959).Google Scholar
22. Bassani, C., Camagni, P. and Pace, S., Nuovo Cimento, Ser. X, 19, 393 (1961).Google Scholar
23. Pope, D. P. and Garin, J. L., J. Appl. Cryst., 10, 14 (1977).Google Scholar
24. Aoki, K. and Izumi, O., Phys. Stat. Sol.(a), 32, 657 (1975).CrossRefGoogle Scholar
25. Guard, R. W. and Westbrook, J. H., Trans. AIME, 215, 807 (1959).Google Scholar
26. Elcock, E. W. and McCombie, C. W., Phys. Rev. 109 605 (1958).CrossRefGoogle Scholar
27. Huntington, H. B., Miller, N. C. and Nerses, V., Acta Met. 9, 749 (1961).Google Scholar
28. Gupta, D., Lazarus, D. and Lieberman, D. S., Phys. Rev., 153, 963 (1967).Google Scholar
29. Domian, H. A. and Aaronson, H. I., Trans. AIME, 230, 441964).Google Scholar
30. Wynblatt, P., Acta Met., 15, 1453 (1967).CrossRefGoogle Scholar
31. Gupta, D. and Lieberman, D. S., Phys. Rev. B 4, 1070 (1971).Google Scholar
32. Fishman, S. G., Gupta, D. and Lieberman, D. S., Phys. Rev. B 2, 1451 (1970).Google Scholar
33. Bose, A., Frohberg, G. and Wever, H., Phys. Stat. Sol.(a), 52, 509 (1979).CrossRefGoogle Scholar
34. Elcock, E. W., Proc. Phys. Soc. (London), 73, 250 (1959).-Google Scholar
35. Kuper, A. B., Lazarus, D., Manning, J. R. and Tomizuka, C. T., Phys. Rev., 104, 1536 (1956).Google Scholar
36. Young, W. M. and Elcock, E. W., Proc. Phys. Soc. (London), 89, 735 (1966).Google Scholar
37. Girifalco, L. A., J. Phys. Chem. Solids, 25, 323 (1964).Google Scholar
38. Schoijet, M. and Girifalco, L. A., J. Phys. Chem. Solids, 29 481, 497 (1968).Google Scholar
39. Cheng, C. Y., Wynblatt, P. M. and Dorn, J. E., Acta Met., 15 1035, 1045 (1967).CrossRefGoogle Scholar
40. Smoluchowski, R., in “Imperfections in Nearly Perfect Crystals,” edited by Shockley, W., Hollomon, J. H., Maurer, R., and Seitz, F. (John Wiley, New York), 1952, pp. 451.Google Scholar
41. Slifkin, L., Lazarus, D. and Tomizuka, C. T., Phys. Rev., 93, 973 (1954).Google Scholar
42. Austin, A. Z. and Richard, N. A., J. Appl. Phys., 33, 3569(1962).Google Scholar
43. Suzuoka, T., J. Phys. Soc. Japan, 19, 839 (1964).-Google Scholar
44. Fisher, J. C., J. Appl. Phys., 22, 74 (1951).CrossRefGoogle Scholar
45. Whipple, R. T. P., Phil. Mag., 45 1225 (1954).Google Scholar
46. Suzuoka, T., Trans. J.I.M., 2, 25 (1961).Google Scholar
47. Turnbull, D. and Hoffman, R. E., Acta Met., 2, 419, (1954).Google Scholar
48. Li, J. C. M., J. Appl. Phys., 32, 525 (1961).Google Scholar
49. Hoffman, R. E., Acta Met., 4, 97 (1956).Google Scholar
50. Couling, S. R. L. and Smoluchowski, R., J. Appl. Phys., 25, 1538 (1954).CrossRefGoogle Scholar
51. Jurisch, M., Ph.D. Thesis, Freiburg, Sachsen, 1969.Google Scholar
52. Arkharov, V. I. and Pentina, A. A., Fiz. Metall. i Metalloved 5, 68 (1957).Google Scholar
53. Herbeuval, I. and Biscondi, M., C. R. Acad. Sci. Paris, C273, 1416 (1956).Google Scholar
54. LeClaire, A. D., Brit. J. Appl. Phys., 14, 351 (1963).Google Scholar
55. Hwang, J. C. M. and Balluffi, R.W., J. Appl. Phys., 50, 1339 (1979).CrossRefGoogle Scholar
56. Renouf, T. J., Phil. Mag., 9, 781 (1964).CrossRefGoogle Scholar
57. Upthegrove, W. R. and Sinnott, M. J., Trans. Am. Soc. Metals, 50, 1031 (1958).Google Scholar
58. Yukawa, S. and Sinnott, M. J., Trans. AIME, 203, 996 (1955).Google Scholar
59. Canon, R. F. and Stark, J. P., J. Appl. Phys., 40, 4361 (1969).Google Scholar
60. Canon, R. F. and Stark, J. P., J. Appl. Phys., 40, 4366 (1969).Google Scholar
61. Huntz, A. M. and Lacombe, P., Can. Met. Quart., 13, 155 (1974).Google Scholar
62. Gupta, D. and Campbell, D. R., Phil. Mag. A, 42, 513 (1980).Google Scholar
63. Butz, R., Erley, W. and Wagner, H., Phys. Stat. Sol.(a), 7, K5 (1971).Google Scholar
64. Adda, Y. and Philibert, J., La Diffusion Dans Les Solides, (Presses Universitaires De France, Paris), 1966, vol. II, pp. 1.Google Scholar
65. Gust, W., Hintz, M. B., Lodding, A., Odelius, H. and Predel, B., Acta Met., 30, 75 (1982).Google Scholar
66. Gupta, D. and Tsui, R. T. C., Appl. Phys. Lett., 17, 294 (1970).Google Scholar
67. Barnes, R. N., Nature, 166, 1032 (1950).Google Scholar
68. Herbeuval, J., Biscondi, M. and Goux, C., Mem. Sci. Rev. Met., 70 39 (1973).Google Scholar
69. Balluffi, R. W., Phys. Stat. Sol., 42, 11 (1970).Google Scholar
70. Gleiter, H. and Chalmers, B., Prog. Mater. Sci., 16, 77 (1972).Google Scholar
71. Gjostein, N. A., Short Circuit Diffusion in Diffusion in “Diffusion,” (ASM, Metals Park, Ohio), 1973, pp. 241.Google Scholar
72. Martin, G. and Perraillon, B., J. de. Physique Colloque, C4, 165 (1975); in “Grain Boundary Structure and Kinetics,” (ASM, Metals-Park, Ohio), 1979, pp. 239.Google Scholar
73. Gupta, D., Campbell, D. R. and Ho, P. S., in “Thin Films-Interdiffusion and Reactions,” edited by Poate, J. M., Tu, K. N. and Mayer, J. W. (John Wiley, New York), 1981, pp. 161.Google Scholar
74. Bakker, H., in “Diffusion in Metals and Alloys,” edited by Kedves, F. J. and Beke, D. L. (Trans Tech Publications, Tihany, Hungary), 1983, pp. 266.Google Scholar
75. Wazzan, A. R., J. Appl. Phys., 36, 3596 (1965).Google Scholar
76. Gupta, D. and Kim, K. K., J. Appl. Phys., 51, 2066 (1980).Google Scholar
77. Okkerse, B., Acta Met., 2, 551 (1954). -Google Scholar
78. Hoffman, R. E. and Turnbull, D., J. Appl. Phys., 22(5), 634 (1951).Google Scholar
79. Stark, J. P. and Upthegrove, W. R., Trans. ASM, 59, 479 (1966).Google Scholar
80. Gupta, D., Phil. Mag., 33, 189 (1976).Google Scholar
81. Guiraldencq, P. and Poye, P., Mem. Scient. Rev. Met., 10, 715 (1973).Google Scholar
82. Smith, A. F., Met. Sci., 9, 425 (1975).Google Scholar
83. Kaygorodov, V. N., Rabovskiy, Y. N. and Talinskiy, V. K., Fiz. Met. Metall., 24, 117 (1967).Google Scholar
84. Cabane, J., J. Chem. Phys., 59, 1165 (1962).Google Scholar
85. Kaygorodov, V. N., Rabovskiy, Y. N. and Talinskiy, V. K., Fiz. Metall., 24, 661 (1967).Google Scholar
86. Levine, H. S. and MacCallum, C. J., J. Appl. Phys., 31, 595 (1960).Google Scholar
87. LeClaire, A. D., Phil. Mag., 42, 468 (1951).Google Scholar
88. van Loo, F. J. J., Acta Met., 18, 1107 (1970).Google Scholar
89. Bastin, G. F. and Rieck, G. D., Met. Trans., 5, 1827 (1974).Google Scholar
90. Fedorov, G. B., Author's Summary of Candidate's Thesis–Moskovskii Mekhanicheskii Institute, 1952.Google Scholar
91. Fedorov, G. B., in “Mobility of Atoms in Crystal Lattices,” edited by Svechnikov, V. N., (Keter Press, Jerusalem), 1970, pp. 28.Google Scholar
92. Yamamoto, T., Takashima, T. and Nishida, K., Trans. J.I.M., 21, 601 (1980).Google Scholar
93. Yamamoto, T., Takashima, T. and Nishida, K., J.J.I.M., 43, 1196 (1979).Google Scholar
94. Yokota, M., Harada, R. and Mitani, H., J.J.I.M., 43, 793 (1979).Google Scholar
95. Iijima, Y. and Hirano, K., J.J.I.M., 35, 511 (1971).Google Scholar