Article contents
Work Function Study for the Search of Efficient Target Materials for Use in Hyperthermal Surface Ionization Using a Scanning Kelvin Probe
Published online by Cambridge University Press: 10 February 2011
Abstract
In order to search for efficient target materials for use in Hyperthermal Surface lonisation (HSI), a new mass spectroscopy ionisation technique, we have performed a study of high and low work function (ø) surfaces as part of an ongoing project. HSI relies on high and low work function surfaces for the production of positive (pHSI) and negative (nHSI) ions, respectively.
Using a novel UHV Scanning Kelvin Probe we have followed the oxidation kinetics of polycrystalline Re at different temperatures and examined the effects of oxidation, flash annealing and sputter-anneal cleaning cycles via high resolution work function topographies. Our results indicate that oxidised Re is the best candidate for pHSI in terms of ionisation efficiency and ø change. The peak work function change of 2.05 eV occurred at 900 K to 950K.
For the nHSI materials Calcium exhibited the best performance with respect to the ionisation efficiency indicating a wf of 2.9 eV. We will present data in terms of mass fragmentation using an HSI-Time-of-Flight (TOF) system and time stability of the work function.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
- 1
- Cited by