Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:44:15.835Z Has data issue: false hasContentIssue false

XPS Measurement of the SiC/AlN Band-Offset at the (0001) Interface

Published online by Cambridge University Press:  21 February 2011

Sean W. King
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleygh, NC 27695
Mark C. Benjamin
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Robert J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleygh, NC 27695
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

X-ray photoelectron spectroscopy is used to determine the band-offset at the SiC/AIN (0001) interface. First, the valence band spectra are determined for bulk materials and analyzed with the help of calculated densities of states. Core levels are then measured across the interface for a thin film of 2H-AIN on 6H-SiC and allow us to extract a band offset of 1.4 ±0.3 eV. The analysis of the discrepancies between measured peak positions and densities of states obtained within the local density approximation provides information on self-energy corrections in good agreement with independent calculations of the latter.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rowland, L.B., Kern, R.S., Tanaka, S., and Davis, R.F., Appl. Phys. Lett. 62, 3333 (1993).Google Scholar
2 Lambrecht, W. R. L. ant Segall, B., Phys. Rev. B 43, 7070 (1991).Google Scholar
3 Benjamin, M. C., Wang, C., Davis, R. F., and Nemanich, R. J., Appl. Phys. Lett. 64, 3288 (1994).Google Scholar
4 van der Weide, Jacob. Ph.D. dissertation, North Carolina State University, 1993.Google Scholar
5 King, S. W., Nemanich, R. J., and Davis, R. F., unpublished.Google Scholar
6 Andersen, O. K., Jepsen, O., Šob, M., in Electronic Band Structure and its Applications, ed. Yussouf, M. (Springer, Heidelberg 1987), p. 1 Google Scholar
7 Kohn, W. and Sham, L. J. Phys. Rev. 140, A1133 (1965)Google Scholar
8 Sham, L. J. and Kohn, W., Phys. Rev. 145, A561 (1966).Google Scholar
9 Lambrecht, W. R. L., Segall, B., Yoganathan, M., Suttrop, W., Devaty, R. P., Choyke, W. J., Edmond, J. A., Powell, J. A., and Alouani, M., Phys. Rev. B 50 10722 (1994).Google Scholar
10 Hedin, L., Phys. Rev. 139, A796 (1965).Google Scholar
11 Rohlfing, M., Krüger, P., J. Pollmann Phys. Rev. B 48, 1791 (1993).Google Scholar
12 Backes, W. H., Bobbert, P. A., van Haeringen, W. Phys. Rev. B 51 4950 (1995)Google Scholar
13 Wenzien, B., Käckell, P., Bechstedt, F. Phys. Rev. B 52, 10897 (1995)Google Scholar
14 Rubio, A., Corkill, J. L., Cohen, M. L., Shirley, E. L.,and Louie, S. G., Phys. Rev. B 48, 11810 (1993).Google Scholar
15 Benjamin, M. C., King, S. W., Davis, R. F., and Nemanich, R. J., unpublished.Google Scholar
16 Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 41, 2832 (1990).Google Scholar
17 Sitar, Z., Smith, L. L., and Davis, R. F., J. Cryst. Growth 141, 11 (1994).Google Scholar