Published online by Cambridge University Press: 01 February 2011
This paper describes atomistic determinations of the Young's modulus of free standing thin films, or nanoplates. Using a combination of analytical formulation and molecular statics simulations, we show that the Young's modulus of a nanoplate may either increase or decrease with the thickness. It is the competition of bond saturation and bond loss on surfaces that dictates the increase or decrease. Taking Cu as an example, we demonstrate that the Young's modulus is larger than its bulk counterparts for nanoplates having some surfaces and loading directions, and smaller for others.