Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T00:04:15.473Z Has data issue: false hasContentIssue false

Accelerated Molecular Dynamics Simulation of AFM Experiments Using the Bond-Boost Method

Published online by Cambridge University Press:  01 February 2011

Woo Kyun Kim
Affiliation:
wkkim@umich.edu, The University of Michigan, Mechanical Engineering, 2300 Hayward St., Ann Arbor, MI, 48109, United States
Michael L. Falk
Affiliation:
mfalk@umich.edu, The University of Michigan, Materials Science and Engineering, 2300 Hayward St., Ann Arbor, MI, 48109, United States
Get access

Abstract

Accelerated molecular dynamics (MD) simulations of recent Atomic Force Microscope (AFM) experiments on oxidized silicon surfaces demonstrate a nontrivial dependence of frictional force on sliding velocity as well as temperature. By implementing hyper dynamics (HD) via the bond-boost method these simulations achieve sliding velocities in the range of real experimental values. Moreover, an analysis of the effects of temperature and sliding velocity on friction provide evidence for a systematic deviation from the modified Tomlinson model. We hypothesize regarding the origin of these deviations, and use the simulations to analyze the atomic processes that accompany sliding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gnecco, E., Bennewitz, R., Gyalog, T., Ch. Loppacher, Bammerlin, M., Meyer, E., and Güntherodt, H.-J., Phys. Rev. Lett. 84, 1172 (2000)Google Scholar
2. Sang, Y., Dubé, M., and Grant, M., Phys. Rev. Lett. 87, 174301 (2001)Google Scholar
3. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., and Brune, H., Phys. Rev. Lett. 91, 084502 (2003)Google Scholar
4. Schirmeisen, A., Jansen, L., Hölscher, H., and Fuchs, H., Appl. Phys. Lett. 88, 123108 (2006)Google Scholar
5. Zhao, X., Hamilton, M., Sawyer, W. G., and Perry, S. S., Tribol. Lett. 27, 113 (2007)Google Scholar
6. He, G., Müser, M. H., and Robbins, M. O., Science 284, 1650 (1999)Google Scholar
7. He, G., and Robbins, M. O., Tribol. Lett. 10, 7 (2001)Google Scholar
8. Fu, X.-Y., Falk, M. L., and Rigney, D. A., Wear 250, 420 (2001)Google Scholar
9. Lorenz, C. D., Webb, E. B. III, Stevens, M. J., Chandross, M., and Grest, G. S., Tribol. Lett. 19, 93 (2005)Google Scholar
10. Voter, A. F., J. Chem. Phys. 106, 4665 (1997)Google Scholar
11. Miron, R. A., and Fichthorn, K. A., J. Chem. Phys. 119, 6210 (2003)Google Scholar
12. Watanabe, T., Fujiwara, H., Noguchi, H., Hoshino, T., and Ohdomari, I., Jpn. J. Appl. Phys. 38, L366 (1999)Google Scholar
13. Torre, J. Dalla, Bocquet, J.-L., Limoge, Y., Crocombette, J.-P., Adam, E., Martin, G., Baron, T., Rivallin, P., and Mur, P., J. Appl. Phys. 92, 1084 (2002)Google Scholar
14. Evstigneev, M., Shirmeisen, A., Jansen, L., Fuchs, H., and Reimann, P., Phys. Rev. Lett. 97, 240601 (2006)Google Scholar