Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:15:51.450Z Has data issue: false hasContentIssue false

Acceptor Concentration Control of p-ZnSe using N2+He Gas Plasma by Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Masakazu Kobayashi
Affiliation:
Department of Electrical and Electronics Engineering, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba 263, Japan
Akihiko Yoshikawa
Affiliation:
Department of Electrical and Electronics Engineering, Chiba University, 1–33 Yayoi-cho, Inage-ku, Chiba 263, Japan
Get access

Abstract

Nitrogen and helium mixed gas plasma was used to grow p-ZnSe. Using the mixed gas, the acceptor concentration could be controlled from 6x1016 to 7x1017 cm−3 while films doped using the nitrogen plasma exhibited the acceptor concentration of 3x1017 cm−3. Doping characteristics such as the acceptor concentration and the PL properties depend on the gas mixing ratio and the rf power. Plasma spectroscopy was used to characterize the variety of the species in the plasma. Although the variety of the nitrogen related peaks in the spectrum were not significantly affected by the gas mixing, several peaks (for example 745nm and 825nm) showed intensity variation that was similar to the acceptor concentration variation with respect to the N2 and He gas mixing ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, R.M., Mar, H.A. and Salansky, N.M., J. Appl. Phys. 58, 1047 (1985).Google Scholar
2. Mitsuyu, T., Ohkawa, K. and Yamazaki, O., Appl. Phys. Lett. 49, 1348 (1986).Google Scholar
3. Park, R.M., Troffer, M.B., Roulea, C.M., DePuydt, J.M. and Haase, M.A., Appl. Phys. Lett. 57, 2127 (1990).Google Scholar
4. Ohkawa, K., Karasawa, T. and Mitsuyu, T., Jpn. J. Appl. Phys. 30, L152 (1991).Google Scholar
5. Haase, M., Qiu, J., DePuydt, J. and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
6. Qiu, J., DePuydt, J.M., Cheng, H. and Haase, M.A., Appl. Phys. Lett. 59, 1896 (1991).Google Scholar
7. Jeon, H., Ding, J., Patterson, W., Nurmikko, A.V., Xie, W., Grillo, D.C., Kobayashi, M., Gunshor, R.L., Hua, G.C. and Otsuka, N., Appl. Phys. Lett. 59, 3619 (1991).Google Scholar
8. Ito, S., Ikeda, M., and Akimoto, K., Jpn. J. Appl. Phys. 31 L1316 (1992).Google Scholar
9. Ohkawa, K., Karasawa, T. and Mitsuyu, T., J. Cryst. Growth 111,797(1991).Google Scholar
10. Nakao, T. and Uenoyama, T., Jpn. J. Appl. Phys. 32, 660 (1990).Google Scholar
11. Tsu, D.V., Parsons, G.N. and Lucovsky, G., J. Vac. Sci. & Technol. A6, 1849 (1988).Google Scholar
12. Bright, A.A., Batey, J. and Tierney, E., Appl. Phys. Lett. 58, 619 (1991).Google Scholar
13. Sugimoto, I. and Nakano, S., Appl. Phys. Lett. 62, 2116 (1993)Google Scholar
14. Tachibana, K., Shimafuji, T. and Matsui, Y., Jpn. J. Appl. Phys. 31, 2588 (1992).Google Scholar
15. Park, R.M., J. Vac. Sci. & Technol. A10, 701 (1992).Google Scholar
16. Lofthus, A. and Krupenie, P.H., J. Phys. Chem. Ref. Data, 6, 113 (1977).Google Scholar
17. Striganov, A.R. and Suentitskii, N.S., Tables of spectral lines of neutral and ionized atoms, (IFI/Plenum, New-York, Washington, 1968) p.77.Google Scholar
18. Park, R.M., J. Vac. Sci. Technol. A10, 701 (1992)Google Scholar
19. Vaudo, R.P., Cook, J.W. Jr, and Schetzina, J.F., to appear in J. Crystal Growth (1994)Google Scholar