Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:16:48.711Z Has data issue: false hasContentIssue false

The Accommodation of Lattice Mismatch on the (111) Interphase Boundary Plane in FCC Metals

Published online by Cambridge University Press:  26 February 2011

P. Gumbsch
Affiliation:
Max-Planck-Institut für Metallforschung, Institut fur Werkstoffwissenschaft, 7000 Stuttgart, FRG
H.F. Fischmeister
Affiliation:
Max-Planck-Institut für Metallforschung, Institut fur Werkstoffwissenschaft, 7000 Stuttgart, FRG
Get access

Abstract

Using the embedded atom method we atomistically model the accommodation of the lattice nismatch and study the propertiesof the misfit dislocations in parallel oriented bicrystals. We calculate and analyze in detail the excess interfacial energies on the (100) and (111) boundary planes. The Ag/Ni system is chosen as a model system for metal/metal interfaces with a large lattice mismatch.

Among the possible boundary planes in parallel oriented fcc bicrystals, the ones with terminating {111} planes arc energetically most favourable and are most often observed in experiments. This can be explained by a detailed analysis of the elastic strain fields in the interfaces, which correspond to networks of misfit dislocations. While the misfit dislocations on the (100) and (011) planes have a ½[01ī] Burgers vector, those on (111) can dissociate into misfit partials. The elastic strains connected with the misfit partials are, of course, much smaller than those for other types of misfit dislocations. The misfit partials form a triangular network within the boundary plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] TSAKALAKOS, T.; JANKOWSKI, A. F.: Ann. Rev. Mater. Sci., 16 (1986) 293313.Google Scholar
[2] BOLLMANN, W.: Crystal Lattices, Interfaces, Matrices, published by the author, 1982.Google Scholar
[3] VAN DER MERWE, J. H.: Treatise Mater. Sci. Technol.,2 (1973) 1103.CrossRefGoogle Scholar
[4] DAW, M. S.; BASKES, M. I.: Pys. Rev., B 29 (1984) 6443.Google Scholar
[5] FoILES, S. M.; BASKES, M. I.; DAw, M. S.: Phys. Rev., B 33 (1986) 7983.Google Scholar
[6] DREGIA, S. A.; WYNBLATT, P.; BAUER, C. L.: in Mat. Res. Soc. Symp. Proc. 141, pages 3997ndash;404, Materials Research Society, 1989.CrossRefGoogle Scholar
[7] GAO, Y.; SHEWMON, P. G.; DREGIA, S. A.: Acta metall., 37 (1989) 31653175.CrossRefGoogle Scholar
[8] GAO, Y.: MERKLE, K. L.: J. Mater. Res., 5 (1990) 19952003.Google Scholar
[9] MAURER, R.; FISCHMEISTER, H. F.: Acta metall., 37 (1989) 11771189.Google Scholar
[10] GRADMANN, U.: Phys. kondens. Materie, 3 (1964) 9198.Google Scholar
[11] GuMBSCH, P.; MAURER, R.; FiSCHMEISTER, H. F.: in Mat. Res. Soc. Symp. Proc. 122, pages 6768, Materials Research Society, 1989.CrossRefGoogle Scholar