No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
High-resolution X-ray diffraction (HRXRD) combined with other diffraction techniques is applied to characterize 3C SiC epilayers hoteroepitaxially grown on atomically flat mesas on 4H and 6H SiC substrates. Small-beam rocking curve scan and reciprocal mapping show extremely high crystalline perfection and homogeneity of the ideally grown 3C-SiC epilayers. Accurate lattice measurements based on X-ray multiple-order reflections reveal that: 1) no misorientation between the (0001) lattice planes across the 4H/3C or 6H/3C interface is detected, confirming the 2D nucleation mechanism of the 3C epilayer from a flat coherent interface; 2) in-plane substrate/epilayer lattice mismatch always exists, but the 3C epilayers do not correspond to a completely relaxed cubic structure, indicating that the epilayers are partially strained; 3) lattice mismatch varies for different regions, implying a complicated strain relaxation mechanism of 3C epilayers on various mesas.