Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-18T23:19:18.283Z Has data issue: false hasContentIssue false

ACRES: Adaptive Coordinate Real-Space Electronic Structure

Published online by Cambridge University Press:  10 February 2011

N. A. Modine
Affiliation:
Physics Department, Harvard University, Cambridge, MA 02138
Gil Zumbach
Affiliation:
Physics Department, Harvard University, Cambridge, MA 02138
Efthimios Kaxiras
Affiliation:
Physics Department, Harvard University, Cambridge, MA 02138
Get access

Abstract

A real space approach to electronic structure calculations has several important advantages. A regular real-space mesh produces a sparse, local, and highly structured Hamiltonian, which enables effective use of iterative numerical methods and parallel computer architectures. However, a regular real space mesh has equal resolution everywhere, while actual physical systems are inhomogeneous. To remedy this inherent inefficiency without losing the advantages of a regular mesh, we carry out computations on a regular mesh in curvilinear space. There are several choices involved in the implementation of the method. These include the choice of the coordinate transform, the form of the discretized Laplacian, the regularization of the ionic potential for all-electron calculations, and the method of calculating the forces. Of particular interest is the use of error analysis to optimize the grid for a given physical system. The adaptive grid is versatile enough to describe accurately a very wide class of systems, including ones with highly inhomogeneous electronic distributions. We report all-electron calculations for atoms and molecules with is and 2p valence electrons, and pseudopotential calculations for molecules and solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chelikowsky, J. R., Troullier, N., and Saad, Y., Phys. Rev. Lett. 72, 1240 (1994); J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11355 (1994).Google Scholar
2. Bernholc, J., Yi, J.-Y., and Sullivan, D. J., Faraday Discuss. 92, 217 (1991); E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 52, R5471 (1995).Google Scholar
3. Baroni, S. and Giannozzi, P., Europhys. Lett. 17, 547 (1992).Google Scholar
4. Iyer, K. A., Merrick, M. P., and Beck, T. L., J. Chem. Phys. 103, 227 (1995).Google Scholar
5. Hoshi, T., Arai, M., and Fujiwara, T., Phys. Rev. B 52, R5459 (1995).Google Scholar
6. Cho, K., Arias, T. A., Joannopoulos, J. D., and Lam, P. K., Phys. Rev. Lett. 71, 1808 (1993).Google Scholar
7. Wei, S. Q. and Chou, M. Y., preprint.Google Scholar
8. White, S. R., Wilkins, J. W., and Teter, M. P., Phys. Rev. B 39, 5819 (1989).Google Scholar
9. Tsuchida, E. and Tsukada, M., Sol. St. Comm. 94, 5 (1995); Phys. Rev. B 52, 5573 (1995).Google Scholar
10. Bylaska, E. J. et al., in Proc. 6th SIAM Conf. Parallel Processing for Sci. Comput. (San Francisco, 1995).Google Scholar
11. Gygi, F., Europhys. Lett. 19, 617 (1992); Phys. Rev. B 48, 11692 (1993); 51, 11190 (1995).Google Scholar
12. Hamann, D. R., Phys. Rev. B 51, 7337 (1995); 51, 9508 (1995).Google Scholar
13. Devenyi, A., Cho, K., Arias, T. A., and Joannopoulos, J. D., Phys. Rev. B 49, 13373 (1994).Google Scholar
14. Gygi, F. and Galli, G., Phys. Rev. B 52, R2229 (1995).Google Scholar
15. We use the exchange-correlation local functional proposed by Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
16. Perdew, J. P., in Electronic Structure of Solids '91, edited by Ziesche, P. and Eschrig, H. (Akademie Verlag, Berlin, 1991).Google Scholar
17. Bachelet, C. B., Hamann, D. R., and Schlüter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
18. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
19. Johnson, B. G., Gill, P. M. W., and Pople, J. A., J. Chem. Phys. 98, 5612 (1993).Google Scholar
20. Huber, K. P. and Herzberg, G., Molecular Spectra and Molecular Structure (Van Nostrand Reinhold Company, New York, 1979), Vol. IV.Google Scholar
21. Perdew, J. P. et al., Phys. Rev. B 46, 6671 (1992).Google Scholar
22. Juan, Y.-M. and Kaxiras, E., Phys. Rev. B 48, 14944 (1993); Private communication.Google Scholar
23. Moore, C. E., Atomic Energy Levels (U. S. Government Printing Office, Washington, 1971), Vol. I.Google Scholar
24. Kutzler, F. W. and Painter, G. S., Phys. Rev. B 37, 2850 (1988).Google Scholar