Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T14:14:58.300Z Has data issue: false hasContentIssue false

Adhesion of Crystalline GeSbTe/TiN Interface Characterized by Four Point Bend, Nanoindentation, and Nanoscratch

Published online by Cambridge University Press:  01 February 2011

guohua Wei
Affiliation:
gwei@micron.com, Micron Technology, Surface Analysis Lab, Boise, ID, 83707, United States
Jun Liu
Affiliation:
junliu@micron.com, Micron Technology, R & D Department, Boise, ID, 83707, United States
David Fillmore
Affiliation:
dfillmore@micron.com, Micron Technology, Surface Analysis Laboratory, Boise, ID, 83707, United States
Mike Violette
Affiliation:
mviolette@micron.com, Micron Technology, R & D Department, Boise, ID, 83707, United States
Shifeng Lu
Affiliation:
shifenglu@micron.com, Micron Technology, Surface Analysis Laboratory, Boise, ID, 83707, United States
Get access

Abstract

Reversible structural phase change phenomenon of certain chalcogenide materials has been investigated extensively in the past decades. Among various phase change chalcogenide materials, Ge2Sb2Te5 (GST) is the most studied material due to its superior optical, electrical and mechanical properties. One of the challenges in using GST is the poor adhesion between crystalline GeSbTe (c-GST) and the substrate, such as TiN. In this work, the adhesion of the c-GST/TiN interface of two samples deposited by different techniques was characterized using four-point bend, nanoindentation and nanoscratch techniques. The nanoindentation and nanoscratch data agree well with the four point bend data. The paper also discusses the application potential of nanoindentation and nanoscratch techniques as qualitative methods for adhesion evaluation in semiconductor process development.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, B. S., Abelson, J. R., Bishop, S. G., Kang, D. H., Cheong, B. K., and Kim, K. B., J. Appl. Phys. 97, 093509 (2005).Google Scholar
2. Ohta, T., Nishiuchi, K., Narumi, K., Kitaoka, Y., Ishibashi, H., Yamada, N. and Kozaki, T., Jpn. J. Appl. Phys. Pp 770774, Vol. 39 (2000).Google Scholar
3. Hudgens, S. and Johnson, B., MRS Bulletin, Nov. (2004).Google Scholar
4. Kim, K. and Ahn, S. J., 43rd International Reliability Physics Symposium (2005).Google Scholar
5. Dauskardt, R. H., Lane, M., Ma, Q. and Krishna, N., Eng. Fract. Mech. 61, 141162 (1998).Google Scholar
6. Oliver, W. C., Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).Google Scholar
7. Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56, 26322638 (1984).Google Scholar
8. Kriese, M. D., Gerberich, W. W. and Mooday, N. R., J. Mater. Res. 14, 30073018 (1999).Google Scholar
9. Liu, W. J., Zhaou, J. N., Rar, A. and Barnard, J. A., Appl. Phys. Lett. 78, 1429 (2001).Google Scholar
10. Wei, G. and Barnard, J. A., J. Appl. Phys. 91, 75657567 (2002).Google Scholar
11. Ye, J., Kojima, N., Ueoka, K., Shimanuki, J., Nasuno, T. and Ogawa, S., J. Appl. Phys. 95, 37043710 (2004).Google Scholar