Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:10:28.119Z Has data issue: false hasContentIssue false

Advanced Aircraft Engine Microlaminated Intermetallic Composite Turbine Technology

Published online by Cambridge University Press:  10 February 2011

R. G. Rowe
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12309
D. W. Skelly
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12309
M. R. Jackson
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12309
M. Larsen
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12309
D. Lachapelle
Affiliation:
GE Aircraft Engines, Cincinnati, OH 45215
Get access

Abstract

Higher gas path temperatures for greater aircraft engine thrust and efficiency will require both higher temperature gas turbine airfoil materials and optimization of internal cooling technology. Microlaminated composites consisting of very high temperature intermetallic compounds and ductile refractory metals offer a means of achieving higher temperature turbine airfoil capability without sacrificing low temperature fracture resistance. Physical vapor deposition, used to synthesize microlaminated composites, also offers a means of fabricating advanced turbine blade internal cooling designs. The low temperature fracture resistance of microlaminated Nb(Cr)-Cr2Nb microlaminated composites approached 20 MPa√m in fracture resistance curves, but the fine grain size of vapor deposited intermetallics indicates a need to develop creep resistant microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sims, C. T. and Hagel, W. C., The Superalloys, John Wiley, NY 1972.Google Scholar
2. Jackson, M. R., Bewlay, B. P., Rowe, R. G., Skelly, D. W. and Lipsitt, H. A., "High Temperature Refractory Metal-Intermetallic Composites", Journal of Metals, 46 (1), pp 3944, 1996.Google Scholar
3. Jackson, M. R., "Ductile Low Density Alloys Based on Niobium", Proc Intl. Conf on Tungsten and Refr. Metals 2, Bose, A. and Dowding, R. J., eds, MPIF,Princeton, 1995, pp. 657664.Google Scholar
4. Jackson, M. R., Jones, K. D., Huang, S. C. and Peluso, L. A., "Response of Nb-Ti Alloys to High Temperature Air Exposure", Refractory Metals Extraction, Processing and Applications, Liddell, K. C., Sadoway, D. R. and Bautista, R. G., eds., TMS, Warrendale, PA, 1991, pp. 335346.Google Scholar
5. Jackson, M. R., “Nb-Ti-Al-Hf-Cr Alloy”, U.S. Patent No. 4,931,254, June 5, 1990.Google Scholar
6. Jackson, M. R., “Hf Containing High Temperature Nb-Ti-Al Alloy”, U.S. PatentNo. 4,956,144, September 11, 1990.Google Scholar
7. Jackson, M. R., “Chromium Containing High Temperature Alloy (Nb-Ti-Al-Cr)”, U.S. Patent No. 4,990,308, February 9, 1991.Google Scholar
8. Jackson, M. R., “Hafnium Containing Niobium, Titanium, Aluminum High Temperature Alloy”, U.S. Patent No. 5,006,307, April 9, 1991.Google Scholar
9. Rowe, R. G. and Skelly, D. W., “The Synthesis and Evaluation of Nb3Al-Nb Laminated Composites”, Mat Res. Soc. Symp. Proc., 273, Materials Research Society, 1992, pp. 411415.Google Scholar
10. Rowe, R. G., Skelly, D. W., Larsen, M., Heathcote, J., Lucas, G. E. and Odette, G. R., "Properties of Microlaminated Intermetallic-Refractory Metal Composites", Mat Res. Soc. Symp. Proc.. 322, Materials Research Society, 1994, pp. 461472.Google Scholar
11. Rowe, R. G., Skelly, D. W., Larsen, M., Heathcote, J., Odette, G. R. and Lucas, G. E., "Microlaminated High Temperature Intermetallic Composites", Scripta Met. et Mater., 11, pp. 14871492, (1994).Google Scholar
12. Heathcote, J., Odette, G. R., Lucas, G. E. and Rowe, R. G., “Mechanical Properties of Metal-Intermetallic Microlaminate Composites”, This Proceedings, Materials Research Society.Google Scholar
13. Rowe, R. G., Skelly, D. W., Larsen, M., Lucas, G. E., Odette, G. R., Heathcote, J., Cao, H.-C. and Evans, A. G., Final Report, Contract Number F33615-91- C- 5613, and, “In-Situ Synthesis of Intermetallic Matrix Composites”, Materials Directorate, Wright-Patterson AFB, OH, to be published.Google Scholar
14. Kampe, J. C. Malzahn, Courtney, T.H. and Leng, Y., "Shape Instabilities of Plate-Like Structures -- I. Experimental Observations in Heavily Cold-Worked In Situ Composites", Acta Metall, 37, pp 17351745 (1989),Google Scholar
15. Thoma, D. J. and Perepezko, J. H., "An Experimental Evaluation of the Phase Relationships and Solubilities in the Nb-Cr System", Mater. Sci and Engrg., A156, pp 97108, (1992).Google Scholar
16. Vogel, H. J. and Ratke, L., "Instability of Grain Boundary Grooves Due to Equilibrium Grain Boundary Diffusion", Acta Met. et Mater., 39, pp 641649 (1991).Google Scholar