Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T05:14:50.193Z Has data issue: false hasContentIssue false

Advanced Dram Cell Dielectric Films using Rapid Thermal Processing

Published online by Cambridge University Press:  22 February 2011

Randhir P.S. Thakur
Affiliation:
Micron Semiconductor Inc., 2805 E. Columbia Rd., Boise, ID 83706
Viju K. Mathews
Affiliation:
Micron Semiconductor Inc., 2805 E. Columbia Rd., Boise, ID 83706
Pierre C. Fazan
Affiliation:
Micron Semiconductor Inc., 2805 E. Columbia Rd., Boise, ID 83706
Get access

Abstract

The reliable operation of a dynamic random access memory (DRAM) device requires a minimum level of charge to be stored in the capacitor. The nonlinear dependence between the scaling of the minimum charge and the cell area for higher DRAM densities is the driving force in the development of exotic capacitor structures and advanced cell dielectric materials. The conventional option of reducing the thickness of the silicon nitride dielectric films for high density DRAM applications will eventually be constrained by the increase in the leakage current due to direct carrier tunneling or by the decrease in the oxidation resistance of the films.

In this paper we discuss the use of rapid thermal processing to modify the interface between the polysilicon storage node of the capacitor and the silicon nitride to improve the electrical and structural characteristics without any loss in capacitance. The influence of electrode roughness on the electrical behavior will also be discussed for the various dielectric stack combinations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lu, N.C.C., IEEE Circ. Dev., 5 (1), 27 (1989).Google Scholar
2 Mine, T., IiJima, S., Yugami, J., Ohga, K. and Morimoto, T., Ext. Abs. Int. Conf. on SSDM, 137 (1989).Google Scholar
3 Mathews, V.K., Ditali, A. and Fazan, P.C., J. Electrochem. Soc., 141, 1066 (1994).Google Scholar
4 Mathews, V.K., Thakur, R.P.S., Ditali, A. and Fazan, P.C., Mat. Res. Soc. Symp. Proc., 284, 51 (1993).Google Scholar
5 Thakur, R.P.S., Ahmad, A., Ditali, A. and Martin, A., Mat. Res. Soc. Symp. Proc., 303, 401 (1993).CrossRefGoogle Scholar
6 Hori, T., IEEE Trans. Electron Devices, 37, 2058 (1990).CrossRefGoogle Scholar
7 Hirashita, N., Kinoshita, M., Aikawa, I. and Ajioka, T., Appl. Phys. Lett. 56 (5), 451 (1990).CrossRefGoogle Scholar
8 Hirose, M., Takauya, M. and Miyazaki, S., Ext. Abs. Spring ECS Meeting, Abs #230, 378 (1992).Google Scholar
9 Kaxiras, E., Phys Rev, Lett., 64 (5), 551 (1990).Google Scholar
10 Weinberg, Z.A. and Pollack, R.A., Appl. Phys. Lett., 27 (4), 254 (1975).Google Scholar
11 Weinberg, Z.A., Appl. Phys. Lett., 29 (9), 617 (1976).CrossRefGoogle Scholar
12 Lion, F.T. and Chen, S.O., IEEE Trans. Electron Dev., ED–31 (12), 1736 (1984).Google Scholar
13 Ando, K., Ishitani, A and Hamano, K., Appl. Phys. Lett., 59 (9), 1081 (1991).Google Scholar
14 Singh, R., Radpour, F. and Chan, P., J. Vac. Sci. Technol. A7, 1456 (1989).Google Scholar
15 Singh, R., Sinha, S., Thankur, R.P.S. and Chan, P., Appl. Phys. Lett., 58, 1217 (1991).Google Scholar