Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:10:31.906Z Has data issue: false hasContentIssue false

Advanced Lateral Crystal Growth of a-Si Thin Films by Double-Pulsed Irradiation of All Solid-State Lasers

Published online by Cambridge University Press:  01 February 2011

Toshio Kudo
Affiliation:
Research & Development Center
Koji Seike
Affiliation:
Research & Development Center
Kazunori Yamazaki
Affiliation:
Research & Development Center
Hirohito Komori
Affiliation:
Research & Development Center
Sachi Yawaka
Affiliation:
Laser System Division, Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka-shi, Kanagawa-ken 237-8555, JAPAN
Shiro Hamada
Affiliation:
Laser System Division, Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka-shi, Kanagawa-ken 237-8555, JAPAN
Cheng-Guo Jin
Affiliation:
ACT Center, TIC Corporation, 2-20-29 Takanawa, Minato-ku, Tokyo 108-0074, JAPAN
Get access

Abstract

A compact annealing machine with all solid-state green lasers has been developed, which has the advantage of widely adjustable solidification rate through the delay time control of two long pulses (pulse width ~100ns). Advanced lateral crystal growth (ALCG) process has been proved by the double-pulsed all solid-state laser annealing. The laser beam has a line shape 0.1mm wide and 17mm long, and the beam profile on the short axis is quasi-Gaussian (FWHM 0.1mm). Scanning the line beam along the short axis at the 86% overlapping ratio, the lateral crystal growth area of width 14μm, parallel to the long axis, is sequentially formed at the pitch of 14μm towards the scanning direction. The advanced lateral growth mechanism is easily explained as follows: (1) At the first irradiation, twin seed lines of width 4μm, parallel to the long axis, generates at a boundary between a near-complete melting region and a complete melting region. (2) At the second irradiation of scanning step 14μm, the front seed line in the scanning direction grows symmetrically toward both sides. (3) At the third irradiation of scanning step 2x14μm, the seeds laterally grow until stopped by the growing of seeds on both sides. Finally the ALCG process by the scanning line-beam technique like the current ELA enables us to produce the laterally grown Si thin-films sequentially arranging the belt-shaped texture at the pitch of 14μm. The quality of the laterally grown Si films is quite well except for the projections generated by the bump of lateral growing seeds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uchikoga, S., MRS Bulletin 27, 881 (2002).Google Scholar
2. Im, J. S. and Sposili, R. S., MRS Bulletin 21, 39 (1996).Google Scholar
3. Matsumura, M., Proc. Eurodisplay'99 (1999) p.351.Google Scholar
4. Hara, A. and Sasaki, N., IEDM. Tech. Digest 943, 301(1999).Google Scholar
5. Helen, Y. et al, Thin Solid Films 383, 143 (2001).Google Scholar
6. Hatano, M., Shiba, T. and Ohkura, M., SID. Digest (2002) p.158.Google Scholar
7. Yamazaki, K. et al, AM-LCD2002 Digest (2002) p.149.Google Scholar
8. Kudo, T., Ichishima, D. and Jin, C-G., AM-LCD2000 Digest (2000) p.125.Google Scholar
9. Kudo, T. (private communication)Google Scholar
10. Fujimura, T. et al, AM-LCD2001 Digest (2001) p.175.Google Scholar