Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:08:09.488Z Has data issue: false hasContentIssue false

AFM and STM Studies of Large Scale Unstable Growth Formed During GaAs (001) Homoepitaxy

Published online by Cambridge University Press:  22 February 2011

C. Orme
Affiliation:
The University of Michigan, Harrison M. Randall Laboratory of Physics Ann Arbor MI 48109-1120
M.D. Johnson
Affiliation:
The University of Michigan, Harrison M. Randall Laboratory of Physics Ann Arbor MI 48109-1120
K.T. Leung
Affiliation:
The University of Michigan, Harrison M. Randall Laboratory of Physics Ann Arbor MI 48109-1120
B.G. Orr
Affiliation:
The University of Michigan, Harrison M. Randall Laboratory of Physics Ann Arbor MI 48109-1120
Get access

Abstract

Atomic force and scanning tunneling microscopy studies have been performed on GaAs(001) films grown by molecular beam epitaxy. Multilayered mounds are seen to evolve when the growth conditions favor island nucleation. As the epilayer thickness is increased, these features grow in all dimensions but the angle of inclination remains approximately constant at 1°. The mounding does not occur on surfaces grown in stepflow. We propose that the multi-layered features are due to an unstable growth mode which relies on island nucleation and the presence of a step edge barrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ide, T., Yamashita, A. and Mizutani, T., Phys. Rev. B 46, 1905 (1992).Google Scholar
2. Heller, E.J. and Lagally, M.G., Appl. Phys. Lett. 60, 2675 (1992).Google Scholar
3. Sudijono, J., Johnson, M.D., Elowitz, M.B., Snyder, C.W. and Orr, B.G., Surf. Sci. 280, 247 (1993).Google Scholar
4. Johnson, M.D., Sudijono, J., Hunt, A.W. and Orr, B.G., Appl. Phys. Lett. 64, 4 (1994).Google Scholar
5. Briones, F., Golmayo, D., Gonzales, L. and Miguel, J.L. de, Jpn. J. Appl. Phys. 24, L478 (1985).Google Scholar
6. Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L. and Spowart, J., J. Cryst. Growth 127, 966 (1993).Google Scholar
7. Isu, T., Watanabe, A., Hata, M. and Katayama, Y., Jpn. J. Appl. Phys. 27, L2259 (1988).Google Scholar
8. Cotta, M.A., Hamm, R.A., Staley, T.W., Chu, S.N.G., Harriot, L.R., Panish, M.B. and Temkin, H., Phys. Rev. Lett. 70, 4106 (1993).Google Scholar
9. Orr, B.G., Snyder, C.W. and Johnson, M.D., Rev. Sci. Inst. 62, 1400 (1991).Google Scholar
10. Tiedje, T., private communication (unpublished).Google Scholar
11. Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M. and Orr, B.G., Phys. Rev. Lett. 72, 1 (1994).Google Scholar
12. Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
13. Villain, J., J. Phys. I 1, 19 (1991).Google Scholar